首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Limited pepsin digestion of human plasma albumin at pH 3.5 and 0 degrees in the presence of octanoate caused cleavage at residue 307 of the albumin molecule to yield two fragments. Thw two fragments corresponding to the NH2- and the COOH-terminal halves of the molecule were isolated in yields of about 15%. The COOH-terminal fragment is a mixture in which about 85% of the molecules had an additional cleavage at residue 422 of the albumin molecule. The COOH-terminal fragment with the additional cleavage at residue 422 contains two peptides which are linked by a disulfide bridge at residues 391 and 437 of the albumin molecule. Both the NH2- and the COOH-terminal fragment of human albumin showed no detectable binding of octanoate anions, that is, less than 1/170 of the binding constant of the primary site of human albumin. These findings differ from earlier observations on limited pepsin digestion of bovine plasma albumin where the corresponding COOH-terminal fragment had the octanoate-binding activity, about 1/8 of the primary binding constant of bovine albumin, while the NH2-terminal fragment did not. The COOH-terminal fragment of bovine albumin did not have cleavage at residue 422 as in the corresponding fragment of human albumin. However, it is not clear that the loss of octanoate-binding activity of fragment C of human albumin is a direct consequence of the cleavage at residue 422.  相似文献   

2.
Surfactant protein D (SP-D) is a carbohydrate-binding glycoprotein containing a collagen-like domain that is synthesized by alveolar type II epithelial cells. The complete primary structure of rat SP-D has been determined by sequencing of a cloned cDNA. The protein consists of three regions: an NH2-terminal segment of 25 amino acids, a collagen-like domain consisting of 59 Gly-X-Y repeats, and a COOH-terminal carbohydrate recognition domain of 153 amino acids. There are 6 cysteine residues present in rat SP-D: 2 in the NH2-terminal noncollagenous segment and 4 in the COOH-terminal carbohydrate-binding domain. The collagenous domain contains one possible N-glycosylation site. The protein is preceded by a cleaved, NH2-terminal signal peptide. SP-D shares considerable homology with the C-type mammalian lectins. Hybridization analysis demonstrates that rat SP-D is encoded by a 1.3-kilobase mRNA which is abundant in lung and highly enriched in alveolar type II cells. Extensive homology exists between rat SP-D and bovine conglutinin.  相似文献   

3.
Staphylocoagulase-binding region in human prothrombin   总被引:4,自引:0,他引:4  
A staphylocoagulase-binding region in human prothrombin was studied by utilizing several fragments prepared from prothrombin by limited proteolysis. Bovine prothrombin, prethrombin 1, prethrombin 2, and human diisopropylphosphorylated alpha-thrombin strongly inhibited formation of the complex ("staphylothrombin") between human prothrombin and staphylocoagulase, but bovine prothrombin fragment 1 and fragment 2 had no effect on the complex formation, indicating that the binding region of human prothrombin for staphylocoagulase is located in the prethrombin 2 molecule. To identify further the staphylocoagulase-binding region, human alpha-thrombin was cleaved into the NH2-terminal large fragment (Mr = 26,000) and the COOH-terminal fragment (Mr = 16,000) by porcine pancreatic elastase. Of these fragments, the COOH-terminal fragment, which includes Asn-200 to the COOH-terminal end of the alpha-thrombin molecule, partially inhibited the complex formation between staphylocoagulase and human prothrombin. In contrast, the NH2-terminal large fragment did not show any inhibitory effect on the staphylothrombin formation. These results suggest that the staphylocoagulase interacts with human prothrombin through the COOH-terminal region of alpha-thrombin B chain. Other plasma proteins, factor X, factor IX, protein C, protein S, protein Z, all of which are structurally similar to prothrombin, did not inhibit the staphylothrombin formation at all, indicating that a specific interaction site with staphylocoagulase is contained only in the prothrombin molecule.  相似文献   

4.
Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.  相似文献   

5.
Pro-ocytocin/neurophysin convertase is a divalent cation-dependent endoprotease isolated from both bovine corpus luteum and neurohypophyseal secretory granules. The putative pro-ocytocin/neurophysin converting enzyme cleaves the Arg12-Ala13 bonds of both pro-ocytocin/neurophysin (1----20) and pro-ocytocin/neurophysin obtained by hemisynthesis. The minimal efficient substrate structure allowing recognition by this processing endoprotease was defined by measuring its cleavage efficiency and the inhibitory properties of a set of 34 selectively modified derivatives of the (1----20) NH2-terminal domain of the ocytocin/neurophysin precursor. The data demonstrate that: (i) the basic Lys11-Arg12 doublet, although necessary, is not sufficient; (ii) a minimal substrate length of nine amino acids (residues 7-15 or 8-16) is essential; (iii) those amino acids around the Lys-Arg doublet which contribute to the formation of a possible beta-turn-alpha-helix secondary structure are critical; (iv) substrate recognition by the enzyme may involve several subsites in which structural determinants, situated on both sides of the basic doublet, participate; (v) the NH2-terminal sequence of neurophysin plays a critical role in the correct reading of the cleavage sequence by the processing endoprotease. It is proposed, first, that this type of structural feature may constitute the basis of a general coding system for endoproteases involved in the processing of polypeptide hormone precursors; second, that in addition to its role in the intragranular packaging of the nonapeptide hormone, neurophysin plays a key role in the correct processing of its common precursor with ocytocin.  相似文献   

6.
Structural organization of the fibrin(ogen) alpha C-domain   总被引:3,自引:0,他引:3  
Tsurupa G  Tsonev L  Medved L 《Biochemistry》2002,41(20):6449-6459
We hypothesized that the alpha C-domain of human fibrinogen (residues hA alpha 221-610) and of other species consists of a compact COOH-terminal region (hA alpha 392-610) and a flexible NH(2)-terminal connector region (hA alpha 221-391) which may contain some regular structure [Weisel and Medved (2001) Ann. N.Y. Acad. Sci. 936, 312-327]. To test this hypothesis, we expressed in E. coli recombinant fragments corresponding to the full-length human alpha C-domain and its NH(2)- and COOH-terminal regions as well as their bovine counterparts, bA alpha 224-568, bA alpha 224-373, and bA alpha 374-568(538), respectively, and tested their folding status by fluorescence spectroscopy, circular dichroism (CD), and differential scanning calorimetry (DSC). All three methods revealed heat-induced unfolding transitions in the full-length bA alpha 224-568 and its two COOH-terminal fragments, indicating that the COOH-terminal portion of the bovine alpha C-domain is folded into a compact cooperative structure. Similar results were obtained by CD and DSC with the full-length and the COOH-terminal h392-610 human fragments. The NH(2)-terminal fragments of both species, b224-373 and h221-392, did not exhibit any sign of a compact structure. However, their heat capacity functions, CD spectra, and temperature dependence of ellipticity at 222 nm were typical for peptides in the extended helical poly(L-proline) type II conformation (PPII), suggesting that they contain this type of regular structure. This is consistent with the presence of proline-rich tandem repeats in the sequence of both bovine and human connector regions. These results indicate that both bovine and human fibrinogen alpha C-domains consist of a compact globular cooperative unit attached to the bulk of the molecule by an extended NH(2)-terminal connector region with a PPII conformation.  相似文献   

7.
Human prothrombin has been purified from American Red Cross Factor IX concentrates. Studies of the activation of the human prothrombin with the use of sodium dodecyl sulfate electrophoretic analysis of activation products indicated that human prothrombin activation is similar to bovine prothrombin activation. Molecular weight analysis of human prothrombin and intermediated by sodium dodecyl sulfate co-electrophoresis with bovine prothrombin and its intermediates resulted in molecular weights of 70,000 for prothrombin, 51,000 for intermediate 1, 41,000 for intermediate 2, 23,000 for intermediate 3, and 13,000 for intermediate 4. Amino acid compositions of human prothrombin and intermediates are similar to those for bovine prothrombin and intermediates. NH2-terminal sequence studies of human prothrombin, intermediates, and alpha-thrombin A and B chains placed the intermediates in the parent human prothrombin molecule as described for the bovine system. Intermediate 3 is the NH2-terminal of prothrombin, and intermediate 1 is the COOH-terminal segment of the zymogen. Intermediate 4 is the NH2-terminal of intermediate 1. Intermediate 2', the immediate precursor of alpha-thrombin, is the COOH-terminal segment of intermediate 1. In general, a high degree of homology in the primary structure of prothrombin and intermediates was observed between the human and bovine system. The NH2-terminal sequences of human intermediate 2' and alpha-thrombin A chain are identical. However, human intermediate 2' isolated in a manner identical with that used for the isolation of bovine intermediate 2 is homologous with bovine intermediate 2, beginning with residue 14.  相似文献   

8.
Carboxypeptidase H is an important enzyme in the biosynthesis of many peptide hormones. Development of a rapid isolation procedure led to the purification of two soluble forms from acidic extracts of bovine pituitary glands. These two forms differed in apparent molecular size (56 and 53 kDa). Both forms were found in the anterior lobe while only the 53-kDa form was found in posterior lobe. Digestion with N-glycosidase F demonstrated that these two forms are not due to alternative glycosylation of a common polypeptide core. Both forms bind antibodies raised against a COOH-terminal peptide of the full-length protein showing that the difference between them is not due to proteolysis at the COOH terminus. These results also argue against the idea that proteolysis of COOH-terminal domains converts the membrane-associated form of this protein into a soluble form. NH2-terminal sequence analysis demonstrated different NH2 termini. The NH2-terminal sequence of the 56-kDa form begins at the site predicted for signal peptide cleavage. Ion-exchange chromatography resolved the 56-kDa form from the 53-kDa form. The two forms were catalytically active with very similar properties. These results show that bovine carboxypeptidase H can be posttranslationally processed at alternative sites and provide evidence against the idea of a prosequence that must be removed before enzyme activity can be expressed.  相似文献   

9.
Antibodies were raised against Escherichia coli ribosomal protein S1 and its NH2- and COOH-terminal fragments, and their specificity was demonstrated by a variety of immunological techniques. These antibodies were then used to investigate the location of protein S1 and its NH2- and COOH-terminal domains on the surface of the 30 S ribosomal subunit by immunoelectron microscopy. In order to prevent dissociation of the protein during the experiments, S1 was cross-linked to 30 S subunits with dithiobis(succinimidyl-propionate); cross-linking yield was 100%. Epitopes of the NH2-terminal domain of S1 were localized at the large lobe of the 30 S ribosomal subunit, close to the one-third/two-thirds partition on the side which in the 70 S ribosome faces the cytoplasm. Experiments with monovalent Fab fragments specific for the COOH-terminal part of S1 provide evidence that the COOH-terminal domain forms an elongated structure extending at least 10 nm from the large lobe of the small subunit into the cytoplasmic space.  相似文献   

10.
A1 is a core protein of the eukaryotic heterogeneous nuclear ribonucleoprotein complex and is under study here as a prototype single-stranded nucleic acid-binding protein. A1 is a two-domain protein, NH2-terminal and COOH-terminal, with highly conserved primary structure among vertebrate homologues sequenced to date. It is well documented that the NH2-terminal domain has single-stranded DNA and RNA binding activity. We prepared a proteolytic fragment of rat A1 representing the COOH-terminal one-third of the intact protein, the region previously termed COOH-terminal domain. This purified fragment of 133 amino acids binds to DNA and also binds tightly to the fluorescent reporter poly(ethenoadenylate), which is used to access binding parameters. In solution with 0.41 M NaCl, the equilibrium constant is similar to that observed with A1 itself, and binding is cooperative. The purified COOH-terminal fragment can be photochemically cross-linked to bound nucleic acid, confirming that COOH-terminal fragment residues are in close contact with the polynucleotide lattice. These binding results with isolated COOH-terminal fragment indicate that the COOH-terminal domain in intact A1 can contribute directly to binding properties. Contact between both COOH-terminal domain and NH2-terminal domain residues in an intact A1:poly(8-azidoadenylate) complex was confirmed by photochemical cross-linking.  相似文献   

11.
Sequence of Guinea Pig Myelin Basic Protein   总被引:5,自引:5,他引:0  
This paper proposes a tentative amino acid sequence of guinea pig myelin basic protein obtained by comparison of peptide fragments of the guinea pig and bovine proteins. Analyses of the tryptic peptides confirmed the known sequence differences in the NH2-terminal half of the molecule and showed that in the COOH-terminal half of the guinea pig protein Ser131 was missing, Ala136 - His137 was deleted, Leu140 was replaced by Phe, and an extra Ala was inserted somewhere within sequence 142-151 (tryptic peptide T23 ). Sequence determination of guinea pig tryptic peptides corresponding to residues 130-134 ( T20 ), 135-138 ( T21 ), and 142-151 ( T23 ) of the bovine protein confirmed the above sequence changes and placed the extra Ala between Gly142 and His143 . The sequence of the region corresponding to bovine residues 130-143 is thus Ala-Asp-Tyr-Lys-Ser-Lys-Gly-Phe-Lys-Gly-Ala-His. No species differences were observed in the amino acid compositions of the remaining tryptic peptides obtained from the COOH-terminal half of the molecule. Based upon these results, the guinea pig basic protein contains 167 amino acid residues and has a molecular weight of 18,256.  相似文献   

12.
The entire amino acid sequence of bovine neurophysin-II has been redetermined by manual Edman degradation of tryptic peptides obtained from performic acid-oxidized neurophysin. Electrophoretically homogeneous bovine neurophysin-II was found to be a mixture of two species of protein molecules both containing 95 amino acid residues. The only difference between the two species of the neurophysin molecules is a single amino acid substitution at residue 89. Of the bovine neurophysin-II used in this work 70% of the protein material contained valine and 30% contained isoleucine at residue 89 in their sequences. The redetermined sequences of bovine neurophysin-II shown in Fig. 2 differ substantially from the reported sequence of bovine neurophysin-II but resemble closely that of porcine neurophysin-I and ovine neurophysin-III (Fig. 3).  相似文献   

13.
Evidence is presented for rapid, limited proteolysis of protein Z by alpha-thrombin. This alpha-thrombin-catalyzed proteolysis of protein Z occurred at a single peptide linkage, between Arg-365 and Gly-366, located in the COOH-terminal portion. The resulting NH2-terminal large fragment (PZt) and the COOH-terminal peptide (C-peptide) were isolated and chemically characterized. The C-peptide consisted of 31 amino acid residues including one galactosamine-type Thr residue and was assigned to the position from Gly-366 to the COOH-terminal residue of Val-396 in protein Z. The NH2-terminal large fragment, PZt, constituted the remainder of protein Z. The abilities to bind calcium of intact protein Z, PZt, and the derivative of protein Z devoid of the NH2-terminal gamma-carboxyglutamic acid (Gla) domain (Gla-domainless), prepared with the known chymotrypsin treatment, were examined by equilibrium dialysis. The results indicated that intact protein Z and PZt contain four calcium binding sites with dissociation constants of 0.1 mM. Moreover, the Scatchard plot analysis showed positive cooperativity, suggesting the presence of at least two initial sites for calcium binding. In contrast, the Gla-domainless protein Z had no calcium binding site, indicating that the domain of protein Z functional for calcium binding occurs within the NH2-terminal Gla domain. This differed from factor X, factor IX, protein S, and protein C, all of which contain one or two calcium binding site(s) independent on their Gla-domains.  相似文献   

14.
It is known that protein S, a vitamin K-dependent plasma protein, isolated from a human source, gives a closely spaced doublet on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after reduction and that this heterogeneity in molecular size results from a limited proteolysis of protein S mediated by alpha-thrombin in human species. We found here that alpha-thrombin also rapidly converted single-chain bovine protein S to a nicked form, which consisted of the NH2-terminal segment containing gamma-carboxyglutamic acid and the COOH-terminal large segment bridged by a disulfide linkage(s). These two segments were isolated and chemically characterized after S-alkylation of the nicked protein S. The results suggest that the alpha-thrombin-catalyzed hydrolysis of protein S probably occurs at a peptide linkage (Arg-Ser) located in the NH2-terminal portion. The conversion of single-chain protein S to the nicked form was also mediated by plasma kallikrein and plasmin, in addition to alpha-chymotrypsin and trypsin. However, the alpha-thrombin-catalyzed conversion did not occur when calcium ions were added to the reaction mixture.  相似文献   

15.
An oxytocin/bovine neurophysin I biosynthetic precursor, [N epsilon-diacetimidyl-30,71, des-His106]pro-OT/BNPI, was synthesized from a synthetic oxytocinyl peptide, 1/2Cys-Tyr-Ile-Gln-Asn-1/2Cys-Pro-Leu-Gly-Gly-Lys-Arg, and native neurophysin by chemical semisynthesis. The semisynthetic precursor contains the entire sequence of the biosynthetic precursor deduced from the complementary DNA structure except for omission of the carboxyl-terminal histidine residue. The covalent structure of the semisynthetic product was verified by amino acid analysis and amino-terminal analysis. Analytical affinity chromatography was employed to evaluate noncovalent binding properties of the precursor. The precursor does not bind significantly to immobilized Met-Tyr-Phe, a hormone binding site ligand. In contrast, the acetimidated precursor binds to immobilized bovine neurophysin II, with a 13-fold higher affinity than does acetimidated neurophysin itself. When a hormonal ligand, [Lys8]vasopressin, was added to the elution buffer at the concentration of 0.1 mM so that a major portion of the immobilized BNPII was liganded, the affinity between the immobilized liganded BNPII and the precursor was enhanced 8-fold and approached the affinity for the liganded (bovine neurophysin I-immobilized BNPII) interaction. The data imply that the precursor can self-associate and that this self-association is closely related to that of liganded neurophysin. The tripeptide affinity matrix data argue that, in the precursor, the ligand binding site of the neurophysin domain is occupied intramolecularly by the hormone domain. The data verify the view that both the self-association surface and hormone binding site are established upon precursor folding. A disulfide stability analysis showed the resistance, to disulfide interchange by dithiothreitol, of semisynthetic precursor but not of neurophysin, as judged by protein association and peptide ligand binding activities, respectively. The results argue that the molecular structure of the precursor is established upon precursor folding and before enzymatic processing that produces mature hormone and neurophysin.  相似文献   

16.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

17.
cGMP-dependent protein kinase from bovine lung is labile to specific proteolysis. Limited digestion with chymotrypsin produces a 65,000-dalton monomer and a 16,000-dalton dimer from a 150,000-dalton dimeric enzyme. The larger proteolytic fragment represents the COOH-terminal portion of the enzyme and contains the catalytic site along with the cGMP binding site. The smaller fragment representing the NH2-terminal portion of the enzyme contains the autophosphorylation site and the interchain disulfide bond(s). A model defining the functional domains of cGMP-dependent protein kinase is presented and comparisons with cAMP-dependent protein kinase regulatory subunit are discussed.  相似文献   

18.
Two populations of tryptic peptides were isolated from bovine estrus cervical mucin (BCM). One contained all the carbohydrate, and was rich in threonine and serine. These glycopeptides had, like the whole mucin, alanine as their NH2-terminal residues. Their COOH-terminal residues were arginine. The second population of peptides was rich in carboxylic amino acids, contained two cysteinyl residues, and had, like the whole mucin, leucine as COOH-terminal residues. Their NH2-terminal residues were aspartic acid. The sum of the residues of one glycopeptide plus one cysteinyl-containing peptide corresponded to the number of residues constituting a putative subunit of BCM. The amino acid sequence of the major cysteinyl peptide was determined. A cluster of hydrophobic residues was found in the COOH-terminal region. The amino acid sequences of two of the glycopeptides were found identical up to the 22nd residue. The small number of tryptic peptides, as well as the large amount of NH2- and COOH-terminal amino acids found in BCM indicate that this glycoprotein is made up of similar subunits with a molecular weight of about 22,000, one of the glycopeptides representing the NH2-terminal part, and one of the cysteinyl peptides, the COOH-terminal part. However, the existence of these subunits was not confirmed by ultracentrifugation of BCM in dithiothreitol and sodium dodecyl sulfate. BCM was polydisperse and had a mean molecular weight of 507,000.  相似文献   

19.
Reaction of tetranitromethane with the lone tyrosine residue of bovine neurophysin I and II, tyrosine-49, gave nitro derivatives of these proteins which were obtained in a highly purified form by preparative electrophoresis. Equilibrium dialysis experiments indicated clearly that oxytocin binding remained essentially unaffected by the chemical modification of tyrosine-49. However, in the case of (8-lysine)vasopressin, the nitrated protein was found to bind only 1 hormone molecule in contrast to the 2 vasopressin molecules bound by the native protein. Ultraviolet absorption difference spectroscopy measurements between 250 nm and 300 nm indicated that upon binding of (2-phenylalanine, 8-lysine)vasopressin, tyrosine-49 of native neurophysin undergoes a change of microenvironment from less to more polar surroundings. Studies of the nitrotyrosyl-49 chromophore of neurophysin by ab sorption spectroscopy in the absence and presence of oxytocin or (8-lysine)vasopressin confirmed this finding. Since dimethylsulfoxide solvent perturbation studies suggested that in the Cys(Me)-Phe-Ile-NH2-neurophysin I complex, tyrosine-49 is more exposed to solvent than in neurophysin I alone, it is concluded that this residue is unmasked by conformational changes upon complex formation.  相似文献   

20.
Preparations of mannose-binding protein isolated from rat liver contain two distinct but homologous polypeptides. The complete primary structures of both of these polypeptides have been determined by sequencing of peptides derived from the proteins, isolation and sequencing of cDNAs for both proteins, and partial characterization of the gene for one of the proteins. Each polypeptide consists of three regions: (a) an NH2-terminal segment of 18-19 amino acids which is rich in cysteine and appears to be involved in the formation of interchain disulfide bonds which stabilize dimeric and trimeric forms of the protein, (b) a collagen-like domain consisting of 18-20 repeats of the sequence Gly-X-Y and containing 4-hydroxyproline residues in several of the Y positions, and (c) a COOH-terminal carbohydrate-binding domain of 148-150 amino acids. The sequences of the COOH-terminal domains are highly homologous to the sequence of the COOH-terminal carbohydrate-recognition portion of the chicken liver receptor for N-acetylglucosamine-terminated glycoproteins and the rat liver asialoglycoprotein receptor. Each protein is preceded by a cleaved, NH2-terminal signal sequence, consistent with the finding that this protein is found in serum as well as in the liver. The entire structure of the mannose-binding proteins is homologous to dog pulmonary surfactant apoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号