首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of exogenous NADH by Jerusalem artichoke ( Helianthus tuberosus L.) tuber mitochondria was strongly inhibited at pH 7.2 by EDTA, EGTA and mersalyl and by chlorotetracycline in the presence of Ca2+. This inhibition disappeared at pH 5.5 where about 50% activity was found as compared to controls at pH 7.2. The rate of oxidation of NADPH at pH 5.5 was the same as for NADH but it was inhibited by 50% by both EDTA and mersalyl.
Mitochondria from Arum maculatum spadices oxidised NADH and NADPH with pH optima of 7.2 and 6.5, respectively. In the presence of EDTA the optima shifted to 6.7 and 5.9, respectively, due to an inhibition at higher pH and a lack of inhibition at lower pH. At pH 6.7 NADH oxidation was completely insensitive to both EDTA and mersalyl whereas the oxidation of NADPH was inhibited by more than 50%. The inhibition of NAD(P)H oxidation by chelators at neutral pH was due to the removal of Ca2+ from the membranes in both types of mitochondria. The differences observed in the properties of NADH and NADPH oxidation suggest that two different dehydrogenases are involved. Because of the strong pH-dependence and the changes in chelator-sensitivity in the physiological pH-range 6–8 it is suggested that the properties of NAD(P)H oxidation provide the cell with important means of metabolic regulation.  相似文献   

2.
Abstract: Phosphorylation of myelin basic protein (MBP) in rat or rabbit brain myelin was markedly stimulated by Ca2+, and this reaction was not essentially augmented by exogenous phosphatidylserine or calmodulin or both. Solubilization of myelin with 0.4% Triton X-100 plus 4 m M EGTA, with or without further fractionation, showed that Ca2+-dependent phosphorylation of MBP required phosphatidylserine, but not calmodulin. DEAE-cellulose chromatography of solubilized myelin revealed a pronounced peak of protein kinase activity stimulated by a combination of Ca2+ and phosphatidylserine; a protein kinase stimulated by Ca2+ plus calmodulin was not detected. These findings clearly indicate an involvement of phospholipid-sensitive Ca2+-dependent protein kinase in phosphorylation of brain MBP, although a possible role for the calmodulin-sensitive species of Ca2+-dependent protein kinase in this reaction could not be excluded or established. Phosphorylation of MBP in solubilized rat myelin catalyzed by the phospholipid-sensitive enzyme was inhibited by adriamycin, palmitoylcarnitine, trifluoperazine, melittin, polymyxin B, and N -(6-aminohexyl)-5-chloro-l-naphthalenesulfonamide (W–7).  相似文献   

3.
Abstract: A possible role for protein kinases in the regulation of free cytosolic Ca2+ levels in nerve endings was investigated by testing the effect of several kinase inhibitors on the increase in cytosolic Ca2+ (monitored with the Ca2+-sensitive dye fura-2) induced by depolarization with 15 or 30 mM K+. The ability of various drugs to inhibit the cytosolic Ca2+ response appeared to correlate with their reported mechanism of action in inhibiting protein kinases. W-7 and trifluoperazine, drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the increase in cytosolic Ca2+ induced by high K+ depolarization, as was sphingosine, a drug that inhibits protein kinase C by binding to the regulatory site, but which also inhibits calcium/calmodulin kinase. On the other hand, drugs that inhibit protein kinases by binding to the catalytic site, such as H-7 (1 m/W ), staurosporine (1μ M ), and K252a(1μ M ), were ineffective. Activation of protein kinase C, which is blocked by each of these drugs, does not appear to be essential to the maintenance of elevated cytosolic Ca2+ in depolarized synaptosomes. All of the drugs, including sphingosine, that functionally inhibit the depolarization-induced elevation in cytosolic Ca2+ have in common the ability to bind to calmodulin. Because the drugs that inhibit protein kinases by competing with ATP binding at the active catalytic site did not block the response in this system, we suggest that a calmodulin or a calmodulin-like binding site participates in the regulation of Ca2+ increases after depolarization.  相似文献   

4.
The respiratory chain of plant mitochondria differs from that in mammalian mitochondria by containing several rotenone-insensitive NAD(P)H dehydrogenases. Two of these are located on the outer, cytosolic surface of the inner membrane. One is specific for NADH, the other for NADPH. Only the latter is inhibited by diphenyleneiodonium (DPI). Both of these enzymes are normally dependent upon Ca2+ for activity and this constitutes a potentially important mechanism by which the cell can regulate the oxidation of cytosolic NAD(P)H via the concentration of free Ca2+. This and other potential regulatory mechanisms such as the substrate concentration and polyamines are discussed.  相似文献   

5.
Properties of glutamate dehydrogenase from developing maize endosperm   总被引:2,自引:0,他引:2  
Glutamate dehydrogenase (EC 1.4.1.3) activity was assayed in homogenates of maize ( Zea mays L. inbred lines Oh43 and Oh43o2) endosperm during development. During the period 20–35 days after pollination anabolic (aminative) activities were higher than catabolic (deaminating) ones. In order to study the regulation of GDH activity, glutamine or glutamate were injected into the ear peduncle before sample harvesting. The amination and deamination reactions showed similar behaviour with different nitrogen sources: glutamine increased, whereas glutamate decreased, both aminative and deaminative reactions. Partially purified enzyme was active with NADH and NADPH in a ratio 9:1. In Tris-HCl buffer a broad optimum at pH 7.6–8.9 and pH 6.8–8.9 was observed with NADH and NADPH, respectively, NADH activity was activated by Ca2+. Saturation curves for (NH4)2SO4 and NADH showed normal Michaelis-Menten kinetics in the presence of 1 m M Ca2+, but substrate inhibition occurred without Ca2+. The enzyme was inactivated by EDTA. The effect of EDTA was reversed by Ca2+ and Mn2+, but not by Cu2+ and Mg2+.  相似文献   

6.
The Alamar blue (resazurin) assay of cell viability monitors the irreversible reduction of non-fluorescent resazurin to fluorescent resorufin. This study focused on the reversible reduction of C12-resorufin to non-fluorescent C12-dihydroresorufin in motor nerve terminals innervating lizard intercostal muscles. Resting C12-resorufin fluorescence decreased when the activity of the mitochondrial electron transport chain (ETC) was accelerated with carbonyl cyanide m -chloro phenyl hydrazone, and increased when ETC activity was inhibited with cyanide. Trains of action potentials (50 Hz for 20–50 s), which reversibly decreased NADH fluorescence and partially depolarized the mitochondrial membrane potential, produced a reversible decrease in C12-resorufin fluorescence which had a similar time course. The stimulation-induced decrease in C12-resorufin fluorescence was blocked by inhibitors of ETC complexes I, III, and IV and by carbonyl cyanide m -chloro phenyl hydrazone, but not by inhibiting mitochondrial ATP synthesis with oligomycin. Mitochondrial depolarization and the decreases in C12-resorufin and NADH fluorescence depended on Ca2+ influx into the terminal, but not on vesicular transmitter release. These results suggest that the reversible reduction of C12-resorufin in stimulated motor nerve terminals is linked, directly or indirectly, to the reversible oxidation of NADH and to Ca2+ influx into mitochondria, and provides an assay for rapid changes in motor terminal metabolism.  相似文献   

7.
A study on Ca2+ transport by mitochondria isolated from Jerusalem artichoke ( Helianthus tuberosus L. cv. OB1) tubers is presented. By following the distribution of Ca2+ under respiratory conditions, we have been able to show that Ca2+ accumulation into the matrix space depends on membrane potential (ΔΨ) since the uptake is not affected by the protonophore nigericin but fully blocked by valinomycin and carbonyl cyanide- p -trifluoromethoxy phenylhydrazone (FCCP). Ca2+ uptake requires phosphate (Pi) and is inhibited by mersalyl and by ruthenium red (RR). In addition to a Ca2+ influx route, mitochondria from H. tuberosus possess an RR-insensitive Ca2+ efflux pathway which is not stimulated by external Na+, Ca2+ is rapidly released from Ca2+-loaded mitochondria in the presence of ionophores such as A23187 and valinomycin and of the uncoupler FCCP. The Pi-transport inhibitor mersalyl also induces a massive Ca2+ release through reversal of the uptake route, the latter process being blocked by RR. Thus Jerusalem artichoke mitochondria possess a Ca2+ cycling mechanism which is different from that of animal mitochondria and certain other plant species.  相似文献   

8.
Abstract: The nervous tissue-specific protein B-50 (GAP-43), which has been implicated in the regulation of neurotransmitter release, is a member of a family of atypical calmodulin-binding proteins. To investigate to what extent calmodulin and the interaction between B-50 and calmodulin are involved in the mechanism of Ca2+-induced noradrenaline release, we introduced polyclonal anti-calmodulin antibodies, calmodulin, and the calmodulin antagonists trifluoperazine, W-7, calmidazolium, and polymyxin B into streptolysin-O-permeated synaptosomes prepared from rat cerebral cortex. Anti-calmodulin antibodies, which inhibited Ca2+/calmodulin-dependent protein kinase II autophosphorylation and calcineurin phosphatase activity, decreased Ca2+-induced noradrenaline release from permeated synaptosomes. Exogenous calmodulin failed to modulate release, indicating that if calmodulin is required for vesicle fusion it is still present in sufficient amounts in permeated synaptosomes. Although trifluoperazine, W-7, and calmidazolium inhibited Ca2+-induced release, they also strongly increased basal release. Polymyxin B potently inhibited Ca2+-induced noradrenaline release without affecting basal release. It is interesting that polymyxin B was also the only antagonist affecting the interaction between B-50 and calmodulin, thus lending further support to the hypothesis that B-50 serves as a local Ca2+-sensitive calmodulin store underneath the plasma membrane in the mechanism of neurotransmitter release. We conclude that calmodulin plays an important role in vesicular noradrenaline release, probably by activating Ca2+/calmodulin-dependent enzymes involved in the regulation of one or more steps in the release mechanism.  相似文献   

9.
Potato tuber mitochondria oxidized exogenous NADH and exogenous NADPH at similar rates; the electron transfer inhibitor rotenone did not inhibit the oxidation of either substrate. Submitochondrial particles, prepared from potato tuber mitochondria, exhibited a greater capacity to oxidize NADH than NADPH; rotenone inhibited the oxidation of NADH by 29% and the oxidation of NADPH by 16%. The oxidation of both NADH and NADPH by potato mitochondria exhibited pH optima of 6.8, and although substantial NADH oxidase activity was observed at pH 8.0, little NADPH oxidase activity was detected at that pH. The oxidation of NADPH by the mitochondria was more sensitive to inhibition by EDTA than was the oxidation of NADH.  相似文献   

10.
The synaptic vesicle accumulation and subsequent morphological remodeling of axon terminals are characteristic features of presynaptic differentiation of zebrafish olfactory sensory neurons. The synaptic vesicle accumulation and axon terminal remodeling are regulated by protein kinase A and calcineurin signaling, respectively. To investigate upstream signals of presynaptic differentiation, we focused on Ca2+ signaling as Ca2+/calmodulin is required for the activation of both calcineurin and some adenylyl cyclases. We here showed that application of Ca2+/calmodulin inhibitor or olfactory sensory neuron-specific expression of calmodulin inhibitory peptide suppressed both synaptic vesicle accumulation and axon terminal remodeling. Thus, the trigger of presynaptic differentiation could be Ca2+ release from intracellular stores or Ca2+ influx. Application of a phospholipase C inhibitor or olfactory sensory neuron-specific expression of inositol 1,4,5-trisphosphate (IP3) 5-phosphatase suppressed synaptic vesicle accumulation, but not morphological remodeling. In contrast, application of a voltage-gated Ca2+ channel blocker or expression of Kir2.1 inward rectifying potassium channel prevented the morphological remodeling. We also provided evidence that IP3 signaling acted upstream of protein kinase A signaling. Our results suggest that IP3-mediated Ca2+/calmodulin signaling stimulates synaptic vesicle accumulation and subsequent neuronal activity-dependent Ca2+/calmodulin signaling induces the morphological remodeling of axon terminals.  相似文献   

11.
Vitamin D3 and stigmasterol have been previously shown to stimulate growth, Ca2+ fluxes and calmodulin synthesis in Phaseolus vulgaris roots. In this study, these sterols (10−9 M ) were shown to accelerate the incorporation of [3H]-thymidine into DNA in Phaseolus vulgaris (L. cv. Contraancha) root apices, similarly to a mixture of the mitogenic plant growth factors 2,4-dichlorophenoxyacetic acid and kinetin (4.6 μ M each). The effects of stigmasterol were blocked by flufenazine, a calmodulin antagonist. Analogously to stigmasterol, the plant hormones stimulated calmodulin synthesis as shown by double labeling of root proteins with [14C]-leucine and [3H]-leucine, respectively, followed by their separation on sodium dodecyl sulfate-po-lyacrylamide gels and a calmodulin affinity column, immunoblot analysis and cyclic AMP phosphodiesterase activation assays. The stimulation of root calmodulin formation by stigmasterol was abolished in the absence of Ca2+ in the incubation medium and was mimicked by the Ca2+ ionophore A–23187. The results suggest that the sterols, like plant mitogenic hormones, promote DNA synthesis, and that these compounds stimulate calmodulin synthesis as a consequence of their mitogenic activity. Ca2+ appears to mediate the action of the sterols.  相似文献   

12.
The effects of the naturally occurring polyamines, spermine, putrescine, and spermidine were explored on mitochondrial state 3. state 4, and uncoupled respiration activities, ADP/O ratio, respiratory control ratio of pepper ( Capsicum annuum L. cv. Early Cal Wonder) and avocado ( Persea americana Mill. cv. Booth-8 or Simmonds) mitochondria oxidizing either succinate, external NADH, malate, α-ketoglutarate or tetramethyl- p -phenylenediamine. Abnormally high concentrations of spermine and spermidine such as might occur during chilling stress of these chilling-sensitive fruits were detrimental to several oxidase activities, especially to external NADH oxidase. State 3 respiration for NADH oxidase was inhibited more than 70% by 10 m M spermine. The spermine inhibition of uncoupled NADH oxidase was not reversed by the presence of divalent cations including Ca2+, Mg2+, Mn2+, and Sr2+ at concentrations up to 10 m M or by 100 m M KCl. The inhibition primarily affected the Vmax. Other possible sites of polyamine interactions are discussed.  相似文献   

13.
Calcium and plant organelles   总被引:2,自引:0,他引:2  
Abstract. The role of intracellular organelles in the regulation of cytosolic Ca2+ levels and whether changes in these levels affect organelle metabolism is considered. We have assessed the biochemical properties of the Ca2+ transporting systems in mitochondrial, chloroplast and microsomal fractions. It is proposed that although all of these organelles can transport Ca2+ to varying extents it would appear that in some tissues at least mitochondria do not play a significant role in the maintenance of cytosolic Ca2+. The most important Ca2+ transporting systems are probably the ATP dependent Ca2+ extrusion across the plasma membrane and Ca2+ uptake by endoplasmic reticulum, as well as light driven Ca2+ uptake by chloroplasts. Changes in cytoplasmic [Ca2+] do appear to regulate the activity of NAD kinase in chloroplasts, the mitochondrial external NADH dehydrogenase and intra-mitochondrial glutamate dehydrogenase, all of which play a key role in plant cell metabolism. Since some of these enzymes are affected by primary stimuli such as light or hormones, it is concluded that Ca2+ may act as a second messenger mediating some of the primary responses.  相似文献   

14.
Calmodulin and calmodulin-mediated processes in plants   总被引:11,自引:3,他引:8  
Abstract. The Ca2+ -binding protein calmodulin is found in all plants investigated so far. The comparison of the biochemical and functional properties reveals that it is structurally conserved and functionally preserved throughout the plant and animal kingdom. Among the plant enzymes so far known to be dependent on the Ca2+ -calmodulin complex are NAD kinase(s), Ca2+ -transport ATPase, quinate: NAD+ oxidoreductase, soluble and membrane bound protein kinases, and H+ -transport ATPase. Calmodulin may play also an important role in the regulation of other cellular reactions, such as hormone-mediated processes, secretion of enzymes, and contractile mechanisms. On the basis of the NAD kinase and its regulation by light and Ca2+ -calmodulin, it is suggested that changes in the cellular, free Ca2+ concentration following stimulation may alter the metabolism of a plant cell. According to this suggestion free Ca2+ may act as a second messenger in plants much as it does in animal cells.  相似文献   

15.
Abstract A protein kinase from Dictyostelium discoideum which phosphorylates the synthetic peptide, calmodulin-dependent protein kinase substrate (CDPKS, amino acid sequence: PLRRTLSVAA) and is stimulated by Ca2+/calmodulin is described. This is the first report of a protein kinase with these characteristics in D. discoideum . The enzyme was partially purified by Q-Sepharose chromatography. The protein kinase is very labile, and rapidly loses Ca2+/calmodulin-dependence upon standing at 4°C, even in the presence of protease inhibitors, making further purification and characterisation difficult. In the active fractions, a 55 kDa polypeptide is labelled with [γ-32 P]ATP in vitro under conditions in which intramolecular rather than intermolecular reactions are favoured. The phosphorylation of this peptide is stimulated in the presence of Ca2+ and calmodulin but not Ca2+ alone. Ca2+/calmodulin-dependent stimulation is inhibited in the presence of the calmodulin antagonist, trifluoperazine (TFP). It is proposed that the 55 kDa polypeptide may represent the autophosphorylated form of the enzyme.  相似文献   

16.
Abstract: In the absence of neurotrophic factors, chronic depolarization of plasma membrane has been shown to maintain several populations of primary neurons in culture. We report that in the PC12 cell line, depolarization causes Ca2+ influx through voltage-gated Ca2+ channels, which is able to stimulate extracellular-regulated kinase (ERK) activity. We studied which mediators were responsible for ERK activation resulting from increased levels of Ca2+ in the cytoplasm and found that calmodulin was involved in this process. The addition of W13, a calmodulin inhibitor, to the culture medium, prevented ERK activation when PC12 cells were depolarized. In addition, we show that high K+ treatment did not induce Trk A phosphorylation, thus excluding the possibility of Ca2+ operating through this receptor to activate the ERK signal transduction pathway. Moreover, although high K+ treatment is able to phosphorylate the epidermal growth factor receptor (EGFR) and thus to activate the ERK signal transduction pathway, we demonstrate that W13 did not alter the state of EGFR phosphorylation in conditions that almost completely blocked ERK activation. These data suggest that calmodulin mediates ERK activation induced by increases in intracellular Ca2+ concentration in PC12 cells by a mechanism that seems to be independent of Trk A and EGFR activation.  相似文献   

17.
18.
Recent studies have suggested that Ca2+/calmodulin (CaM) or CaM-like proteins may be involved in blue light (BL)-dependent proton pumping in guard cells. As the increase in cytosolic concentration of Ca2+ is required for the activation of CaM and CaM-like proteins, the origin of the Ca2+ was investigated by measuring BL-dependent proton pumping with various treatments using guard cell protoplasts (GCPs) from Vicia faba . BL-dependent proton pumping was affected neither by Ca2+ channel blockers nor by changes of Ca2+ concentration in the medium used for the GCPs. Addition of Ca2+ ionophores and an agonist to GCPs did not induce proton pumping. However, BL-dependent proton pumping was inhibited by 10 m M caffeine, which releases Ca2+ from the intracellular stores, and by 10 μ M 2,5-di-( tert -butyl)-1,4-benzohydroquinone (BHQ) and 10 μ M cyclopiazonic acid (CPA), inhibitors of Ca2+-ATPase in the sarcoplasmic and endoplasmic reticulum (ER). By contrast, the inhibitions were not observed by 10 μ M thapsigargin, an inhibitor of animal ER-type Ca2+-ATPase. The inhibitions by caffeine and BHQ were reversible. Light-dependent stomatal opening in the epidermis of Vicia was inhibited by caffeine, BHQ, and CPA. From these results, we conclude that the Ca2+ thought to be required for BL-dependent proton pumping may originate from intracellular Ca2+ stores, most likely from ER in guard cells, and that this origin of Ca2+ may generate a stimulus-specific Ca2+ signal for stomatal opening.  相似文献   

19.
Abstract: Regulation of gene expression is one of the mechanisms by which neuronal activity elicits long-term changes in neuronal phenotype and function. Although activity-dependent induction of immediate-early genes has been extensively studied, much less is known about the late-response genes. We have investigated the activity-dependent regulation of δ-opioid receptor (DOR) mRNA levels in NG108-15 cells. Transsynaptic activation was mimicked by depolarization with 55 m M KCl or veratridine. Both treatments lead to a time-dependent increase of DOR mRNA levels. Ca2+ entry through L-type voltage-dependent Ca2+ channels activated by depolarization appears to be involved, because L-type channel blockers reduced the induction of DOR expression. Ca2+ binding to calmodulin is the next step in the signal transduction pathway, because a calmodulin antagonist, W7, reduced the effect of veratridine. A selective inhibitor of calmodulin kinases (KN-62) and cyclosporin, an inhibitor of calcineurin, also antagonized the depolarization-induced increase in DOR mRNA levels, which indicates that both calcium/calmodulin-dependent enzymes are involved in the activity-dependent induction of DOR gene expression. Induction of DOR gene expression by an activity-dependent increase in intracellular Ca2+ concentration may serve as a feedback regulatory mechanism because activation of DOR leads to hyperpolarization and lower excitability of neurons.  相似文献   

20.
Brauer, D., Schubert C. and Tu, S,-I. 1990. Characterization of a Ca2+-translocating ATPase from corn root microsomes. - Physiol. Plant. 78: 335-344.
The existence of a Ca2+-translocating ATPase in microsomes from maize ( Zea mays L. cv, WF9 × Mo17) roots was evaluated using assays to follow Ca2+-stimulation of ATP hydrolysis and Ca2+ transport by changes in the fluorescence of chlorotetracycline, ATP hydrolysis by microsomes was stimulated by the addition of Ca2+ and further enhanced by the Ca ionophore A23187 and bovine brain calmodulin only in the presence of Ca2+, Stimulation by these agents was additive and sensitive to vanadate. These results were consistent with the presence of a Ca2+-translocating ATPase in microsomal membranes. The fluorescence of chlorotetracycline in the presence of microsomes and Ca2+ increased upon the addition of ATP, indicating the transport of Ca2+, The initial rate and extent of change in fluorescence were stimulated by calmodulin and quenched by the addition of either A23187 or EGTA, but not by protonophores. Changes in chlorotetracycline fluorescence were prevented by vanadate. Therefore, results using chlorotetracycline also indicated the presence of a Ca2+-translocating ATPase, Localization experiments indicated that the majority of the Ca2+-translocating ATPase was on the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号