首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of hormonal promotion of T24-ras oncogene-transfected rat embryo fibroblasts (REF) were compared to cotransformation of these cells with adenovirus E1A and ras. Cotransfection of E1A + ras resulted in the appearance of morphologically transformed cells which were very efficiently established into cell lines. Addition of glucocorticoid hormones to T24-ras-transfected REF cells resulted in cells with a transformed morphology and a capacity to form foci. These foci were, however, inefficiently established into stable cell lines. Removal of hormone from growing cells resulted in retarded growth, suggesting that the hormone acted as a growth factor on these cells. Both E1A-transformed cells and hormone-treated ras-transformed cells showed a reduction in synthesis of high molecular weight tropomyosin isoforms and a decreased expression of surface fibronectin. Control experiments demonstrated that the effects of hormone were mediated through the glucocorticoid receptor. Our findings suggest that glucocorticoid hormones may promote the in vitro growth of ras-initiated REF cells into stably transformed cell lines, but that this ability is limited compared to that of adenovirus E1A.  相似文献   

2.
Immortalization of primary cells is a multistep process. The adenovirus E1A 12S gene product is a member of the class of oncoproteins that have the ability to establish primary cells as cell lines in culture. It is encoded by two exons. Extensive mutational analysis demonstrates that four regions of the E1A 12S gene, encoded by both exons, are necessary for immortalization of primary epithelial cells. Expression of two regions is necessary to activate quiescent cells into the cell cycle but is unable to extend the life span of these cells in culture and thus cannot immortalize them. These regions are encoded by the first exon. A third first-exon region, for which no function has yet been identified, is also required. These three regions are also required for 12S to cooperate with an activated ras gene to bring about tumorigenic transformation. The fourth region is required to maintain the cells in a proliferative mode, extend their life span in culture, and induce an autocrine growth factor. These functions are encoded by the second exon. The cells immortalized by wild-type 12S and immortalization-competent mutants retain their epithelial morphology and expression of keratin and vimentin intermediate filament proteins.  相似文献   

3.
Hybrid adenovirus type 12 (Ad12)/Ad5 E1A genes were constructed by homologous recombination in Escherichia coli, a technique which offers several advantages over conventional mutagenesis for genetic analysis of proteins. In particular, functional differences between the proteins can be mapped by correlating the replacement of specific sequences with the acquisition of new properties, and there is no requirement for common unique restriction sites or polymerase chain reaction strategies to construct the hybrids. Recombinant adenoviruses expressing these hybrid E1A proteins were capable of replicating efficiently in HeLa cells, with the exception of one construct which contained a hybrid transactivation domain. The transforming activity of the hybrid E1A constructs was assayed by DNA transfection of primary baby rat kidney cells. Plasmids containing Ad12 E1 were approximately 20-fold less efficient at transformation than those with E1 of Ad5, and it was found that two regions in exon 1 of E1A mediate this difference. No differences were found in the abilities of any hybrid E1A proteins to bind to cellular proteins previously determined to be important for transformation by E1A.  相似文献   

4.
5.
Cooperation of the nuclear oncogene E1A with the E1B oncogene is required for transformation of primary cells. Expression vectors were constructed to produce the 19-kilodalton (19K) and 55K E1B proteins under the direction of heterologous promoters in order to investigate the role of individual E1B proteins in transformation. Coexpression of E1A and either the 19K or 55K E1B gene products was sufficient for the formation of transformed foci in primary rat cells at half the frequency of an intact E1B gene, suggesting that the 19K and 55K proteins function via independent pathways in transformation. Furthermore, the effects of Ha-ras and the E1B 19K gene product were additive when cotransfected with E1A, suggesting that the 19K protein functions in transformation by a mechanism independent from that of ras as well. Although expression of E1A and either E1B protein was sufficient for the subsequent growth of cells in long-term culture, the 19K protein was required to support growth in semisolid media. As the 19K protein has been shown to associate with and disrupt intermediate filaments (IFs) when transiently expressed with plasmid vectors (E. White and R. Cipriani, Proc. Natl. Acad. Sci. USA, 86:9886-9890, 1989), the organization of IFs in transformed cells was investigated. Primary rat cells transformed by plasmids encoding E1A plus the E1B 19K protein showed gross perturbations of IFs, whereas cell lines transformed by plasmids encoding E1A plus the E1B 55K protein or E1A plus Ha-ras did not. These results suggest that an intact IF cytoskeleton may inhibit anchorage-independent growth and that the E1B 19K protein can overcome this inhibition by disrupting the IF cytoskeleton.  相似文献   

6.
G Winberg  T Shenk 《The EMBO journal》1984,3(8):1907-1912
  相似文献   

7.
8.
9.
Primary cultures of rat embryo fibroblasts have been shown to be resistant to transformation by dominant oncogenes such as v-src. We sought to determine if similar resistance is displayed by primary epithelial cells, and, if so, whether an immortalizing oncogene such as E1A could enhance transformation of primary epithelial cells by v-src. Transformation of primary rat epithelial cells by v-src was synergistically enhanced when E1A expression plasmids were cotransfected with a v-src expression plasmid. Foci were more numerous and observed earlier (9 to 14 days) with E1A plus v-src than with v-src alone (18 to 28 days). This cotransformation ability was abrogated by deletions in CR1 or CR2 of E1A, which encode the binding regions for the pRb family and are responsible for E1A-mediated cell cycle activation. Mutations in the p300 binding site or the second exon, which abolish immortalization, did not affect v-src cooperation, in contrast to ras and adenovirus E1B. While kinase activation was required for growth in soft agar, differential activation of Src kinase did not correlate with transformation efficiency. Cell morphology and actin structures were not dramatically impacted by E1A expression; thus, hypertransformation, as previously described for ras cotransformation, was not observed with v-src and second-exon mutants of E1A. However, growth rates for cells expressing both E1A and v-Src were higher than those for cells expressing only v-Src. These results suggest that functions involved in cell cycle activation encoded by E1A first exon can enhance v-src transformation of primary epithelial cells.  相似文献   

10.
The formation of complexes between oncoproteins of DNA tumor viruses and the cellular protein p53 is thought to result in inactivation of the growth suppressor function of p53. In cells transformed by nononcogenic human adenovirus type 5 (Ad5), the 55-kDa protein encoded by E1B forms a stable complex with p53 and sequesters it in the cytoplasm. However, the homologous 54-kDa protein of highly oncogenic Ad12 does not detectably associate with p53. Yet in Ad12-transformed cells, p53 is metabolically stable, is present at high levels in the nucleus, and contributes to the oncogenicity of the cells. Such properties have previously been described for mutant forms of p53. Here, we show that stable p53 in Ad12-transformed cells is wild type rather than mutant and that stabilization of p53 is a direct consequence of the expression of the Ad12 E1B protein. We also compared the effects of the E1B proteins on transformation of rodent cells by different combinations of oncogenes. A synergistic interaction was observed for the gene encoding the 54-kDa E1B protein of Ad12 with myc plus ras oncogenes, resembling the effect of mutant p53 on myc plus ras. In contrast, the Ad5 55-kDa E1B protein strongly inhibited transformation by myc plus ras but stimulated transformation by E1A plus ras. The data are explained in terms of different interactions of the two E1B proteins with endogenous p53. The results suggest that in cultured rat cells, endogenous wild-type p53 plays an essential role in cell proliferation, even in the presence of myc plus ras. The dependence on p53 is lost, however, when the adenovirus E1A oncogene is present.  相似文献   

11.
Infection with adenovirus mutants carrying either point mutations or deletions in the coding region for the 19-kDa E1B gene product (19K protein) causes degradation of host cell and viral DNAs (deg phenotype) and enhanced cytopathic effect (cyt phenotype). Therefore, one function of the E1B 19K protein is to protect nuclear DNA integrity and preserve cytoplasmic architecture during productive adenovirus infection. When placed in the background of a virus incapable of expressing a functional E1A gene product, however, E1B 19K gene mutations do not result in the appearance of the cyt and deg phenotypes. This demonstrated that expression of the E1A proteins was responsible for inducing the appearance of the cyt and deg phenotypes. By constructing a panel of viruses possessing E1A mutations spanning each of the three E1A conserved regions in conjunction with E1B 19K gene mutations, we mapped the induction of the cyt and deg phenotypes to the amino-terminal region of E1A. Viruses that fail to express conserved region 3 (amino acids 140 to 185) and/or 2, (amino acids 121 to 185) or nonconserved sequences between conserved regions 2 and 1 of E1A (amino acids 86 to 120) were still capable of inducing cyt and deg. This indicated that activities associated with these regions, such as transactivation and binding to the product of the retinoblastoma susceptibility gene, were dispensable for induction of E1A-dependent cytotoxic effects. In contrast, deletion of sequences in the amino terminus of E1A (amino acids 22 to 107) resulted in extragenic suppression of the cyt and deg phenotypes. Therefore, a function affected by deletion of amino acids 22 to 86 of E1A is responsible for exerting cytotoxic effects in virally infected cells. Furthermore, transient high-level expression of the E1A region using a cytomegalovirus promoter plasmid expression vector was sufficient to induce the cyt and deg phenotypes, demonstrating that E1A expression alone is sufficient to exert these cytotoxic effects and that other viral gene products are not involved. Finally, placing E1A expression under the control of a strong promoter did not alter the requirement for E1B in the transformation of primary cells. One possibility is that the E1B 19K protein is required to overcome the cytotoxic effects of E1A protein expression and thereby enable primary cells to become transformed.  相似文献   

12.
We have examined a series of small deletion mutants within exon 2 of the adenovirus 2/5 E1A oncogene product, the 243R protein, for immortalization, ras cooperative transformation, tumorigenesis and metastasis. Compared with wild-type 243R, various deletion mutants located between residues 193 and 243 cooperated more efficiently with ras to induce large transformed foci of less adherent cells that were tumorigenic and metastatic. However, the greatest enhancement of transformation (comparable to that obtained with a deletion of the C-terminal 67 amino acids) was observed with a mutant carrying a deletion of residues 225-238. This mutant was also more defective in immortalization. These results suggest that this 14 amino acid region may contain a function that is important for immortalization and negative modulation of tumorigenesis and metastasis. To identify cellular proteins that may associate with the exon 2-coded region of E1A (C-terminal half) and modulate its transformation potential, we constructed a chimeric gene coding for the C-terminal 68 amino acids of E1a fused to bacterial glutathione-S-transferase (GST). This fusion protein was used to purify cellular proteins that bind to the C-terminal region of E1a. A 48 kDa cellular protein doublet (designated CtBP) was found to bind specifically to the GST-E1a C-terminal fusion protein as well as to bacterially expressed full-length E1a (243R) protein. It also co-immunoprecipitated specifically with E1a. Analysis of a panel of GST-E1a C-terminal mutant proteins indicates that residues 225-238 are required for the association of E1a and CtBP, suggesting a correlation between the association of CtBP and the immortalization and transformation modulating activities of exon 2. CtBP is a phosphoprotein and the level of phosphorylation of CtBP appears to be regulated during the cell cycle, suggesting that it may play an important role during cellular proliferation.  相似文献   

13.
The 289-residue (289R) and 243R early region 1A (E1A) proteins of human adenovirus type 5 induce cell transformation in cooperation with either E1B or activated ras. Here we report that Ser-132 in both E1A products is a site of phosphorylation in vivo and is the only site phosphorylated in vitro by purified casein kinase II. Ser-132 is located in conserved region 2 near the primary binding site for the pRB tumor suppressor and, in 289R, just upstream of the conserved region 3 transactivation domain involved in regulation of early viral gene expression. Mutants containing alanine or glycine in place of Ser-132 interacted with pRB-related proteins at somewhat reduced efficiency; however, all Ser-132 mutants transformed primary rat cells in cooperation with E1B as well as or better than the wild type when both major E1A proteins were expressed. Such was not the case with mutants expressing only 289R. In cooperation with E1B, the Asp-132 and Gly-132 mutants yielded reduced numbers of smaller transformed foci. With activated ras, all Ser-132 mutants were significantly defective for transformation and the rare foci produced were small and contained extensive areas populated by low densities of flat cells. In the absence of E1B, all Ser-132 mutants induced p53-independent cell death more readily than virus expressing wild-type 289R. These results suggested that phosphorylation at Ser-132 may enhance the binding of pRB and related proteins and also reduce the toxicity of E1A 289R, thus increasing transforming activity.  相似文献   

14.
The 12S protein encoded by the adenovirus E1A region induces cellular DNA synthesis in and proliferation and immortalization of primary rat epithelial cells in the presence or absence of serum. It also induces the production of a growth factor(s) that stimulates epithelial cell proliferation. We have undertaken a mutational analysis of the 12S gene to determine the sequences required for these functions. We found that a region near the C-terminus of the 12S protein was required for growth factor induction. No activities have been defined previously for this region. Furthermore, we show that growth factor production was necessary for epithelial cells to survive past their normal life span in culture and to become immortalized. The ability to induce growth factor production required prior expression of E1A activities encoded by the N-terminus of the 12S protein, including activation of quiescent cells into the cell cycle, and an unknown activity that required expression of the first 13 amino acids of the gene. In addition, examination of the subcellular localization of mutant 12S polypeptides suggested new regions that affect the nuclear localization of E1A proteins.  相似文献   

15.
Oncogenic ras activates multiple signaling pathways to enforce cell proliferation in tumor cells. The ERK1/2 mitogen-activated protein kinase pathway is required for the transforming effects of ras, and its activation is often sufficient to convey mitogenic stimulation. However, in some settings oncogenic ras triggers a permanent cell cycle arrest with features of cellular senescence. How the Ras/ERK1/2 pathway activates different cellular programs is not well understood. Here we show that ERK1/2 localize predominantly in the cytoplasm during ras-induced senescence. This cytoplasmic localization seems to be dependent on an active nuclear export mechanism and can be rescued by the viral oncoprotein E1A. Consistent with this hypothesis, we showed that E1A dramatically down-regulated the expression of the ERK1/2 nuclear export factor PEA-15. Also, RNA interference against PEA-15 restored the nuclear localization of phospho-ERK1/2 in Ras-expressing primary murine embryo fibroblasts and stimulated their escape from senescence. Because senescence prevents the transforming effect of oncogenic ras, our results suggest a tumor suppressor function for PEA-15 that operates by means of controlling the localization of phospho-ERK1/2.  相似文献   

16.
17.
18.
BRCA1 is a tumor suppressor with several important nuclear functions. BRCA1 has no known cytoplasmic functions. We show here that the two previously identified nuclear localization signals (NLSs) are insufficient for nuclear localization of BRCA1 due to the opposing action of an NH2-terminal nuclear export signal. In transfected breast cancer cells, BRCA1 nuclear localization requires both the NLSs and NH2-terminal RING domain region; mutating either of these sequences shifts BRCA1 to the cytoplasm. The BRCA1 RING element mediates nuclear import via association with BARD1, and this is not affected by cancer-associated RING mutations. Moreover, BARD1 directly masks the BRCA1 nuclear export signal, and the resulting block to nuclear export is requisite for efficient import and nuclear localization of ectopic and endogenous BRCA1. Our results explain why BRCA1 exon 11 splice variants, which lack the NLSs but retain the RING domain, are frequently detected in the nucleus and in nuclear foci in vivo. In fact, co-expression of BARD1 promoted formation of DNA damage-induced nuclear foci comprising ectopic wild-type or NLS-deficient BRCA1, implicating BARD1 in nuclear targeting of BRCA1 for DNA repair. Our identification of BARD1 as a BRCA1 nuclear chaperone has regulatory implications for its reported effects on BRCA1 protein stability, ubiquitin ligase activity, and DNA repair.  相似文献   

19.
Yu JH  Lin BY  Deng W  Broker TR  Chow LT 《Journal of virology》2007,81(10):5066-5078
Human and animal papillomavirus DNA replicates as multicopy nuclear plasmids. Replication requires two viral proteins, the origin-recognition protein E2 and the replicative DNA helicase E1. Using genetic, biochemical, and immunofluorescence assays, we demonstrated that efficient nuclear import of the human papillomavirus (HPV) type 11 E1 protein depends on a codominant bipartite nuclear localization sequence (NLS) and on phosphorylation of the serine residues S89 and S93 by the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase, and c-Jun N-terminal protein kinase. The NLS and the MAPK substrates are located within a 50-amino-acid-long peptide near the amino terminus, previously designated the localization regulatory region (LRR). The downstream NLS overlaps the cyclin-binding motif RRL, which is necessary for phosphorylation by the cyclin-dependent kinases to inactivate a dominant nuclear export sequence, also in the LRR. Alanine mutations of the MAPK substrates significantly impaired nuclear import, whereas phospho-mimetic mutations partially restored nuclear import. We further identified two MAPK docking motifs near the C terminus of E1 that are conserved among E1 proteins of many HPVs and bovine papillomavirus type 1. Mutations of these MAPK docking motifs or addition of specific MAPK inhibitors significantly reduced nuclear import. Interestingly, a fraction of the NLS-minus E1 protein was cotransported with the E2 protein into the nucleus and supported transient viral DNA replication. In contrast, E1 proteins mutated in the MAPK docking motifs were completely inactive in transient replication, an indication that additional properties were adversely affected by those changes.  相似文献   

20.
To study the relationship between the primary structure of the c-myc protein and some of its functional properties, we made in-frame insertion and deletion mutants of the normal human c-myc coding domain that was expressed from a retroviral promoter-enhancer. We assessed the effects of these mutations on the ability of c-myc protein to cotransform normal rat embryo cells with a mutant ras gene, induce foci in a Rat-1-derived cell line (Rat-1a), and localize in nuclei. Using the cotransformation assay, we found two regions of the protein (amino acids 105 to 143 and 321 to 439) where integrity was critical: one region (amino acids 1 to 104) that tolerated insertion and small deletion mutations, but not large deletions, and another region (amino acids 144) to 320) that was largely dispensable. Comparison with regions that were important for transformation of Rat-1a cells revealed that some are essential for both activities, but others are important for only one or the other, suggesting that the two assays require different properties of the c-myc protein. Deletion of each of three regions of the c-myc protein (amino acids 106 to 143, 320 to 368, and 370 to 412) resulted in partial cytoplasmic localization, as determined by immunofluorescence or immunoprecipitation following subcellular fractionation. Some abnormally located proteins retained transforming activity; most proteins lacking transforming activity appeared to be normally located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号