首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

We found that Arabidopsis AtADF1 was phosphorylated by AtCDPK6 at serine 6 predominantly and the phosphoregulation plays a key role in the regulation of ADF1-mediated depolymerization of actin filaments.

Abstract

Since actin-depolymerizing factor (ADF) is highly conserved among eukaryotes, it is one of the key modulators for actin organization. In plants, ADF is directly involved in the depolymerization of actin filaments, and therefore important for F-actin-dependent cellular activities. The activity of ADF is tightly controlled through a number of molecular mechanisms, including phosphorylation-mediated inactivation of ADF. To investigate Arabidopsis ADF1 phosphoregulation, we generated AtADF1 phosphorylation site-specific mutants. Using transient expression and stable transgenic approaches, we analyzed the ADF1 phosphorylation mutants in the regulation of actin filament organizations in plant cells. By in vitro phosphorylation assay, we showed that AtADF1 is phosphorylated by AtCDPK6 at serine 6 predominantly. Chemically induced expression of AtCDPK6 can negatively regulate the wild-type AtADF1 in depolymerizing actin filaments, but not those of the mutants AtADF1(S6A) and AtADF1(S6D). These results demonstrate a regulatory function of Arabidopsis CDPK6 in the N-terminal phosphorylation of AtADF1.  相似文献   

2.
Several potassium (K+) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K+ channels allow sodium reabsorption in the proximal tubule (PT), K+ recycling and K+ reabsorption in the thick ascending limb (TAL) and K+ secretion and K+ reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K+ to function as a secretory K+ channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K+ channels. Our results expand the repertoire of K+ channels that contribute to K+ homeostasis to include the Kv1 family.  相似文献   

3.
Hayashi T  Su TP 《Life sciences》2005,77(14):1612-1624
The brain is highly enriched in lipids. However, the molecular biological roles of lipids in the brain have been largely unexplored. Although, in 1990s, several studies have demonstrated the roles of lipids in a variety of neuronal functions and certain neurological diseases, the involvement of lipids in drug dependence, if any, is almost totally unknown. Sigma-1 receptors are brain-enriched proteins that interact with psychostimulants such as cocaine and methamphetamine. Sigma-1 receptors possess a putative sterol-binding pocket and are predominantly expressed on the endoplasmic reticulum (ER) where most lipids and their precursors are synthesized. Sigma-1 receptors are involved in drug-seeking behaviors and in psychostimulant-induced behavioral sensitization. Recent studies demonstrated that sigma-1 receptors target the lipid-storing subcompartments of the ER and are colocalized with cholesterol and neutral lipids. Sigma-1 receptors form detergent-insoluble lipid microdomains (lipid rafts) on the ER subcompartments and can translocate on the ER when stimulated. Upregulation of sigma-1 receptors affect the levels of plasma membrane lipid rafts by changing the lipid components therein. The membrane reconstitution thus induced by sigma-1 receptors in turn affects functions of proteins residing in plasma membrane lipid rafts including tropic factor receptors and tyrosine kinases. Specifically, we recently found that sigma-1 receptors modulate MAP kinase activation induced by tropic factors, neuritegenesis and oligodendrocyte differentiation-all related to lipid raft reconstitution. Sigma-1 receptors may thus play a role in psychostimulant-induced long-lasting morphological changes in the brain via the capacity of sigma-1 receptors in regulating ER lipid transport and the resultant plasma membrane lipid raft reconstitution.  相似文献   

4.

Introduction

Osteoclastogenesis plays an important role in the bone erosion of rheumatoid arthritis (RA). Recently, Notch receptors have been implicated in the development of osteoclasts. However, the responsible Notch ligands have not been identified yet. This study was undertaken to determine the role of individual Notch receptors and ligands in osteoclastogenesis.

Methods

Mouse bone marrow-derived macrophages or human peripheral blood monocytes were used as osteoclast precursors and cultured with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF) to induce osteoclasts. Osteoclasts were detected by tartrate-resistant acid phosphatase (TRAP) staining. K/BxN serum-induced arthritic mice and ovariectomized mice were treated with anti-mouse Delta-like 1 (Dll1) blocking monoclonal antibody (mAb).

Results

Blockade of a Notch ligand Dll1 with mAb inhibited osteoclastogenesis and, conversely, immobilized Dll1-Fc fusion protein enhanced it in both mice and humans. In contrast, blockade of a Notch ligand Jagged1 enhanced osteoclastogenesis and immobilized Jagged1-Fc suppressed it. Enhancement of osteoclastogenesis by agonistic anti-Notch2 mAb suggested that Dll1 promoted osteoclastogenesis via Notch2, while suppression by agonistic anti-Notch1 mAb suggested that Jagged1 suppressed osteoclastogenesis via Notch1. Inhibition of Notch signaling by a gamma-secretase inhibitor suppressed osteoclastogenesis, implying that Notch2/Dll1-mediated enhancement was dominant. Actually, blockade of Dll1 ameliorated arthritis induced by K/BxN serum transfer, reduced the number of osteoclasts in the affected joints and suppressed ovariectomy-induced bone loss.

Conclusions

The differential regulation of osteoclastogenesis by Notch2/Dll1 and Notch1/Jagged1 axes may be a novel target for amelioration of bone erosion in RA patients.  相似文献   

5.
The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K+ channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane.  相似文献   

6.
(+)-SKF 10047 (N-allyl-normetazocine) is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+)-SKF 10047 inhibits K+, Na+ and Ca2+ channels via sigma-1 receptor activation. We found that (+)-SKF 10047 inhibited NaV1.2 and NaV1.4 channels independently of sigma-1 receptor activation. (+)-SKF 10047 equally inhibited NaV1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+)-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+)-SKF 10047 inhibition of NaV1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM) and1,3-di-o-tolyl-guanidine (DTG) also inhibited NaV1.2 currents through a sigma-1 receptor-independent pathway. The (+)-SKF 10047 inhibition of NaV1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe1764 and Tyr1771 in the IV-segment 6 domain of the NaV1.2 channel and Phe1579 in the NaV1.4 channel for (+)-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit NaV1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.  相似文献   

7.

Background

HIV-1 infection is associated with profound dysfunction of myeloid dendritic cells, for reasons that remain ill-defined. Soluble HLA class I molecules can have important inhibitory effects on T cells and NK cells, but may also contribute to reduced functional properties of professional antigen-presenting cells. Here, we investigated the expression of soluble HLA class I isoforms during HIV-1 infection and assessed their functional impact on antigen-presenting characteristics of dendritic cells.

Results

Soluble HLA class I molecules were highly upregulated in progressive HIV-1 infection as determined by quantitative Western blots. This was associated with strong increases of intracellular expression of HLA class I isoforms in dendritic cells and monocytes. Using mixed lymphocyte reactions, we found that soluble HLA class I molecules effectively inhibited the antigen-presenting properties of dendritic cells, however, there was no significant influence of HLA class I molecules on the cytokine-secretion properties of these cells. The immunomodulatory effects of soluble HLA class I molecules were mediated by interactions with inhibitory myelomonocytic MHC class I receptors from the Leukocyte Immunoglobulin Like Receptor (LILR) family.

Conclusions

During progressive HIV-1 infection, soluble HLA class I molecules can contribute to systemic immune dysfunction by inhibiting the antigen-presenting properties of myeloid dendritic cells through interactions with inhibitory myelomonocytic HLA class I receptors.  相似文献   

8.

Background

The extent of enhanced bone marrow angiogenesis in chronic lymphocytic leukemia (CLL) and relationship to proangiogenic factors and prognostic indicators is largely unexplored.

Methods

To further investigate the role of angiogenesis in CLL by evaluating the topography and extent of angiogenesis in a group of CLL bone marrow biopsies, to study the expression of pro and antiangiogenic vascular factors in CLL cells to more precisely document the cell types producing these factors, and to evaluate the role, if any, of localized hypoxia in upregulation of angiogenesis in CLL We used immunohistochemistry (IHC) (n = 21 pts) with antibodies to CD3 and CD20, proangiogenic (VEGF, HIF-1a) and antiangiogenic (TSP-1) factors, and VEGF receptors -1 and -2 to examine pattern/extent of CLL marrow involvement, microvessel density (MVD), and angiogenic characteristics; flow cytometry (FC) was performed on 21 additional cases for VEGF and TSP-1.

Results

CLL patients had higher MVD (23.8 vs 14.6, p~0.0002) compared to controls (n = 10). MVD was highest at the periphery of focal infiltrates, was not enhanced in proliferation centers, and was increased irrespective of the presence or absence of cytogenetic/immunophenotypic markers of aggressivity. By IHC, CLL cells were VEGF(+), HIF-1a (+), TSP-1(-), VEGFR-1(+), and VEGFR-2(+). By FC, CLL cells were 1.4–2.0-fold brighter for VEGF than T cells and were TSP-1(-).

Conclusion

CLL demonstrates enhanced angiogenesis, with increased MVD, upregulated VEGF and downregulated TSP-1. Upregulation of HIF-1a in all CLL cases suggests localized tissue hypoxia as an important stimulant of microvessel proliferation. The presence of VEGF receptors on CLL cells implies an autocrine effect for VEGF. Differences in MVD did not correlate with traditional genetic/immunophenotypic markers of aggressiveness.  相似文献   

9.
The sigma-1 receptor is an intracellular protein characterized as a tumor biomarker whose function remains mysterious. We demonstrate herein for the first time that highly selective sigma ligands inhibit volume-regulated chloride channels (VRCC) in small cell lung cancer and T-leukemia cells. Sigma ligands and VRCC blockers provoked a cell cycle arrest underlined by p27 accumulation. In stably sigma-1 receptor-transfected HEK cells, the proliferation rate was significantly lowered by sigma ligands when compared with control cells. Sigma ligands produced a strong inhibition of VRCC in HEK-transfected cells but not in control HEK. Surprisingly, the activation rate of VRCC was dramatically delayed in HEK-transfected cells in the absence of ligands, indicating that sigma-1 receptors per se modulate cell regulating volume processes in physiological conditions. Volume measurements in hypotonic conditions revealed indeed that the regulatory volume decrease was delayed in HEK-transfected cells and virtually abolished in the presence of igmesine in both HEK-transfected and T-leukemic cells. Moreover, HEK-transfected cells showed a significant resistance to staurosporine-induced apoptosis volume decrease, indicating that sigma-1 receptors protect cancer cells from apoptosis. Altogether, our results show for the first time that sigma-1 receptors modulate "cell destiny" through VRCC and cell volume regulation.  相似文献   

10.

Background

Selective serotonin reuptake inhibitors (SSRIs) have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists.

Methods and Findings

The effects of three SSRIs (fluvoxamine, sertraline, paroxetine) and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), and dehydroepiandrosterone (DHEA)-sulfate) on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP3) receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine) and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38MAPK, c-Jun N-terminal kinase (JNK), and the Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways blocked the potentiation of NGF-induced neurite outgrowth by SA4503.

Conclusion

These findings suggest that stimulation of sigma-1 receptors and subsequent interaction with IP3 receptors, PLC-γ, PI3K, p38MAPK, JNK, and the Ras/Raf/MAPK signaling pathways are involved in the mechanisms of action of sigma-1 receptor agonists such as fluvoxamine and SA4503.  相似文献   

11.
12.
The beta subunit cytoplasmic domains of integrin adhesion receptors are necessary for the connection of these receptors to the actin cytoskeleton. The cytoplasmic protein, talin, binds to beta integrin cytoplasmic tails and actin filaments, hence forming an integrin-cytoskeletal linkage. We used recombinant structural mimics of beta(1)A, beta(1)D and beta(3) integrin cytoplasmic tails to characterize integrin-binding sites within talin. Here we report that an integrin-binding site is localized within the N-terminal talin head domain. The binding of the talin head domain to integrin beta tails is specific in that it is abrogated by a single point mutation that disrupts integrin localization to talin-rich focal adhesions. Integrin-cytoskeletal interactions regulate integrin affinity for ligands (activation). Overexpression of a fragment of talin containing the head domain led to activation of integrin alpha(IIb)beta(3); activation was dependent on the presence of both the talin head domain and the integrin beta(3) cytoplasmic tail. The head domain of talin thus binds to integrins to form a link to the actin cytoskeleton and can thus regulate integrin function.  相似文献   

13.

Background

Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor αvβ3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis.

Results

Two melanoma cell lines C8161.9 and M14 both express high levels of αvβ3 integrin and adhere to vitronectin. However, only the highly metastatic C8161.9 cells are capable of invading vitronectin-enriched Matrigel in an αvβ3-depenent manner. Elevated levels of PKCα and PKCδ, and activated Src were detected specifically in the highly metastatic melanoma cells, but not in the low metastatic M14 cells. Inhibition of Src or PKC activity suppressed αvβ3-dependent invasion. Furthermore, over expression of Src or PKCα and PKCδ was sufficient to confer αvβ3-dependent invasiveness to M14 cells. Stress fiber formation and focal adhesion formation were almost completely absent in C8161.9 cells compared to M14 cells. Inhibition of Src signaling was sufficient to restore normal actin architecture, and resulted in decreased p190RhoGAP phosphorylation and enhanced RhoA activity. Src had no effect on Rac activity. Loss of PKCα expression, but not PKCδ, by siRNA inhibited Rac and PAK activity as well as invasiveness. Loss of PKCα restored focal adhesion formation and partially restored stress fiber formation, while loss of PKCδ primarily restored stress fibers.

Conclusion

The misregulated expression of PKCα and PKCδ and elevated Src activity in metastatic melanoma cells is required for efficient αvβ3-mediated invasion. PKCα and Src enhance αvβ3-mediated invasion in part by increasing the GTPase activity of Rac relative to RhoA. PKCα influences focal adhesion formation, while PKCδ controls stress fibers.  相似文献   

14.
15.
Joost P  Methner A 《Genome biology》2002,3(11):research0063.1-research006316

Background

G-protein-coupled receptors (GPCRs) are the largest and most diverse family of transmembrane receptors. They respond to a wide range of stimuli, including small peptides, lipid analogs, amino-acid derivatives, and sensory stimuli such as light, taste and odor, and transmit signals to the interior of the cell through interaction with heterotrimeric G proteins. A large number of putative GPCRs have no identified natural ligand. We hypothesized that a more complete knowledge of the phylogenetic relationship of these orphan receptors to receptors with known ligands could facilitate ligand identification, as related receptors often have ligands with similar structural features.

Results

A database search excluding olfactory and gustatory receptors was used to compile a list of accession numbers and synonyms of 81 orphan and 196 human GPCRs with known ligands. Of these, 241 sequences belonging to the rhodopsin receptor-like family A were aligned and a tentative phylogenetic tree constructed by neighbor joining. This tree and local alignment tools were used to define 19 subgroups of family A small enough for more accurate maximum-likelihood analyses. The secretin receptor-like family B and metabotropic glutamate receptor-like family C were directly subjected to these methods.

Conclusions

Our trees show the overall relationship of 277 GPCRs with emphasis on orphan receptors. Support values are given for each branch. This approach may prove valuable for identification of the natural ligands of orphan receptors as their relation to receptors with known ligands becomes more evident.  相似文献   

16.

Background

Cellular infection with human immunodeficiency virus (HIV) both in vitro and in vivo requires a member of the chemokine receptor family to act as a co-receptor for viral entry. However, it is presently unclear to what extent the interaction of HIV proteins with chemokine receptors generates intracellular signals that are important for productive infection.

Results

In this study we have used a recently described family of chemokine inhibitors, termed BSCIs, which specifically block chemokine-induced chemotaxis without affecting chemokine ligands binding to their receptors. The BSCI termed Peptide 3 strongly inhibited CCR5 mediated HIV infection of THP-1 cells (83 ± 7% inhibition assayed by immunofluoresence staining), but had no effect on gp120 binding to CCR5. Peptide 3 did not affect CXCR4-dependent infection of Jurkat T cells.

Conclusion

These observations suggest that, in some cases, intracellular signals generated by the chemokine coreceptor may be required for a productive HIV infection.  相似文献   

17.
18.

Background

The axon initial segment (AIS) plays a crucial role: it is the site where neurons initiate their electrical outputs. Its composition in terms of voltage-gated sodium (Nav) and voltage-gated potassium (Kv) channels, as well as its length and localization determine the neuron's spiking properties. Some neurons are able to modulate their AIS length or distance from the soma in order to adapt their excitability properties to their activity level. It is therefore crucial to characterize all these parameters and determine where the myelin sheath begins in order to assess a neuron's excitability properties and ability to display such plasticity mechanisms. If the myelin sheath starts immediately after the AIS, another question then arises as to how would the axon be organized at its first myelin attachment site; since AISs are different from nodes of Ranvier, would this particular axonal region resemble a hemi-node of Ranvier?

Results

We have characterized the AIS of mouse somatic motor neurons. In addition to constant determinants of excitability properties, we found heterogeneities, in terms of AIS localization and Nav composition. We also identified in all α motor neurons a hemi-node-type organization, with a contactin-associated protein (Caspr)+ paranode-type, as well as a Caspr2+ and Kv1+ juxtaparanode-type compartment, referred to as a para-AIS and a juxtapara (JXP)-AIS, adjacent to the AIS, where the myelin sheath begins. We found that Kv1 channels appear in the AIS, para-AIS and JXP-AIS concomitantly with myelination and are progressively excluded from the para-AIS. Their expression in the AIS and JXP-AIS is independent from transient axonal glycoprotein-1 (TAG-1)/Caspr2, in contrast to juxtaparanodes, and independent from PSD-93. Data from mice lacking the cytoskeletal linker protein 4.1B show that this protein is necessary to form the Caspr+ para-AIS barrier, ensuring the compartmentalization of Kv1 channels and the segregation of the AIS, para-AIS and JXP-AIS.

Conclusions

α Motor neurons have heterogeneous AISs, which underlie different spiking properties. However, they all have a para-AIS and a JXP-AIS contiguous to their AIS, where the myelin sheath begins, which might limit some AIS plasticity. Protein 4.1B plays a key role in ensuring the proper molecular compartmentalization of this hemi-node-type region.  相似文献   

19.

Background

Activation of voltage-gated potassium channels of the Kv7 (KCNQ) family reduces cellular excitability. These channels are therefore attractive targets for treatment of diseases characterized by hyperexcitability, such as epilepsy, migraine and neuropathic pain. Retigabine, which opens Kv7.2-5, is now in clinical trial phase III for the treatment of partial onset seizures. One of the main obstacles in developing Kv7 channel active drugs has been to identify compounds that can discriminate between the neuronal subtypes, a feature that could help diminish side effects and increase the potential of drugs for particular indications.

Methodology/Principal Findings

In the present study we have made a thorough investigation of the Bristol-Myers Squibb compound (S)-N-[1-(4-Cyclopropylmethyl-3,4-dihydro-2H-benzo[1], [4]oxazin-6-yl)-ethyl]-3-(2-fluoro-phenyl)-acrylamide [(S)-2] on human Kv7.1-5 channels expressed in Xenopus laevis oocytes. We found that the compound was a weak inhibitor of Kv7.1. In contrast, (S)-2 efficiently opened Kv7.2-5 by producing hyperpolarizing shifts in the voltage-dependence of activation and enhancing the maximal current amplitude. Further, it reduced inactivation, accelerated activation kinetics and slowed deactivation kinetics. The mechanisms of action varied between the subtypes. The enhancing effects of (S)-2 were critically dependent on a tryptophan residue in S5 also known to be crucial for the effects of retigabine, (S)-1 and BMS-204352. However, while (S)-2 did not at all affect a mutant Kv7.4 with a leucine in this position (Kv7.4-W242L), a Kv7.2 with the same mutation (Kv7.2-W236L) was inhibited by the compound, showing that (S)-2 displays a subtype-selective interaction with in the Kv7 family.

Conclusions/Significance

These results offer further insight into pharmacological activation of Kv7 channels, add to the understanding of small molecule interactions with the channels and may contribute to the design of subtype selective modulators.  相似文献   

20.
Cell adhesion is a fundamental property of epithelial cells required for anchoring, migration and survival. During cell migration, the formation and disruption of adhesion sites is stringently regulated by integration of multiple, sequential signals acting in distinct regions of the cell. Recent findings implicate cyclin dependent kinase 5 (Cdk5) in the signaling pathways that regulate cell adhesion and migration of a variety of cell types. Experiments with epithelial cell lines indicate that Cdk5 activity exerts its effects by limiting Src activity in regions where Rho activity is required for stress fiber contraction and by phosphorylating the talin head to stabilize nascent focal adhesions. Both pathways regulate cell migration by increasing adhesive strength.Key words: Cdk5, Src, Rho, stress fibers, epithelial cells, cell adhesion, cell migrationAnchoring of epithelial cells to their basement membrane is essential to maintain their morphology, normal physiological function and survival. Cells attach to extracellular matrix components by means of membrane-spanning integrins, which cluster and link to the actin cytoskeleton via components of focal adhesions. At focal adhesions, actin is bundled into stress fibers, multi-protein cellular contractile machines that strengthen attachment and provide traction during migration.1 Stress fiber contraction is generated by myosin II, a hexamer containing one pair of each non-muscle heavy chains (NMHCs), essential light chains, and myosin regulatory light chains (MRLC). Myosin motor activity is regulated by phosphorylation of MRLC at Thr18/Ser19 and is required to generate tension on actin filaments and to maintain stress fibers.1 Although a number of kinases have been identified which phosphorylate MRLC at Thr18/Ser19, the principal kinases in most cells are myosin light chain kinase (MLCK)2 and Rho-kinase (ROCK),3 a downstream effector of the small GTPas, RhoA.Rho family small GTPases play a central role in regulating many aspects of cytoskeletal organization and contraction.4 These GTPases are subject to both positive regulation by guanine nucleotide exchange factors (GEFs), such as GEF-H1,5,6 and negative regulation by GTPase-activating proteins (GAPs), such as p190RhoGAP.7 As cells spread, the Rho-family GTPase, Cdc42, is activated at the cell periphery, leading to the formation of numerous filapodia. Focal adhesion formation is first seen at the tips of these filapodia as focal adhesion proteins such as talin and focal adhesion kinase (FAK) bind to the intracellular domains of localized integrins.8 Src is recruited to activated FAK at the nascent focal adhesion and generates binding sites for additional focal adhesion proteins by phosphorylating FAK and paxillin.9 Src activity is essential for the further maturation of the focal adhesion and for activating the Rho-family GTPase, Rac, leading to Arp2/3-dependent actin polymerization, formation of a lamellipodium and extension of the cell boundary. Simultaneously, Src inhibits RhoA by phosphorylating and activating its upstream inhibitor, p190RhoGAP. As the focal adhesion matures, Src is deactivated, allowing the Rho activation necessary for mDia-dependent actin polymerization,10 myosin-dependent cytoskeletal contraction5 and tight adhesion to the extracellular matrix. Since new focal adhesions continually form at the distal boundary of the spreading cell, the most mature and highly contracted stress fibers are localized at the center of the cell.Cell adhesion is an essential component of cell migration: if adhesion is too weak, cells can not generate the traction necessary for migration; if it is too strong, they are unable to overcome the forces that anchor them in place. Thus, the relationship between adhesion force and migration rate is a bell-shaped curve.11 Migration rate increases as adhesive strength increases until an optimum value is reached. Thereafter, increases in adhesive strength decrease migration rate. Since the strength of adhesion depends on extracellular matrix composition as well as the types of integrin expressed in the cell, a decrease in adhesive strength may result in either faster or slower cell migration.Several lines of evidence indicate that the proline-directed serine/threonine kinase cyclin dependent kinase 5 (Cdk5) plays an integral role in regulating cell adhesion and/or migration in epithelial cells.1217 Cdk5 is an atypical member of cyclin dependent kinase family, which is activated by the non-cyclin proteins, p35 or p39.18 Cdk5 is most abundant in neuronal cells where it also regulates migration and cytoskeletal dynamics.19 In neurons, Cdk5 exerts its effects on migration at least in part by phosphorylating FAK,19 and the LIS1 associated protein, NDEL1.20 In contrast, recent findings have revealed two novel pathways involved in Cdk5-dependent regulation of migration in epithelial cells.16,17One of these newly discovered mechanisms links Cdk5 activation to control of stress fiber contraction.16 We have found that Cdk5 and its activator, p35, co-localize with phosphorylated myosin regulatory light chain (MRLC) on centrally located stress fibers in spreading cells.16 Moreover, Cdk5 is strongly activated in spreading cells as central stress fiber contraction becomes pronounced.21 Since contraction of these central stress fibers is primarily responsible for tight attachment between the cell and the extracellular matrix,5 the above findings suggested that Cdk5 might regulate cell adhesion by regulating MRLC phosphorylation. To test this possibility we inhibited Cdk5 activity by several independent means and found that MRLC phosphorylation was likewise inhibited. In addition, we found that inhibiting Cdk5 either prevented the formation of central stress fibers or led to their dissolution. The concave cell boundaries characteristic of contracting cells were also lost.16 Since MRLC lacks a favorable site for phosphorylation by Cdk5, we asked whether Cdk5 might affect the upstream signaling pathways that regulate MRLC phosphorylation. Experiments with specific pathway inhibitors indicated that the MRLC phosphorylation involved in stress fiber contraction in lens epithelial cells was regulated largely by Rho-kinase (ROCK). Inhibiting Cdk5 activity not only significantly reduced ROCK activity, but also blocked activation of its upstream regulator, Rho. To explore the mechanism behind the Cdk5-dependent regulation of Rho, we turned our attention to p190RhoGAP, which appears to play a major role in regulating Rho-dependent stress fiber contraction.7 This RhoGAP must be phosphorylated by Src to be active; as a result, Rho activity is low in the early stages of cell spreading, when Src activity is high. At later times, Src activity falls, p190RhoGAP activity is lost, and Rho-GTP is formed, enabling Rho-dependent myosin phosphorylation and stress fiber contraction.9,10 We have found that inhibiting Cdk5 activity during this later stage of cell spreading increases Src activity and Src-dependent phosphorylation of its substrate, p190RhoGAP. This in turn leads to decreased Rho activity accompanied by loss of Rho-dependent myosin phosphorylation, dissolution of central stress fibers, and loss of cell contraction (Fig. 1). Moreover, inhibiting Src protects cells from the loss of Rho activation and dissolution of central stress fibers produced by inhibiting Cdk5.16 Since the effects of Cdk5 on Rho-dependent cytoskeletal contraction appear to be mediated almost entirely through Cdk5-dependent regulation of Src, it will be particularly important to determine how Cdk5 limits Src activity.Open in a separate windowFigure 1Cdk5 inhibition reduces contraction of preformed stress fibers. (A) Cells were spread on fibronectin for 60 min to adhere, allowing them to form focal adhesion and stress fibers (pre-incubation) and then further incubated for 2 h in absence (control) or presence of Cdk5 inhibitor (olomoucine) and stained with phalloidin. The cells without olomoucine (control) had concave boundaries and well-formed stress fibers. Olomoucine treated cells showed loss of central stress fibers and failure to contract. Scale bar = 20 µ. (B) experimental conditions were same as shown in (A). Cdk5 inhibitor, olomoucine, was added after 1 h of spreading (indicated as t = 0) and cells were incubated for an additional 2h in absence or presence of olomoucine. Cell lysates were immunoblotted with antibodies for pMRLC (upper) and MRLC (middle). Tubulin was used as a loading control (lower). Lane 1: untreated (at 0 h); Lane 2: untreated (at 2 h); Lane 3: Cdk5 inhibitor (olomoucine) treated. (C) results of three independent experiments of the type shown in (B) were quantified by densitometry and normalized to determine the relative levels of pMRLC at each time. Statistical analysis demonstrated a significant (p < 0.05) decrease in pMRLC level in olomoucine treated cells compared to untreated cells.The central stress fibers regulated by Cdk5 play a central role in anchoring cells to the substratum, and their loss when Cdk5 is inhibited will reduce adhesion. As discussed above, reduction in cell adhesion may either increase or decrease the rate of cell migration, depending on the cell type and extracellular matrix composition. In lens and corneal epithelial cells, the reduction in adhesion produced by Cdk5 inhibition promotes cell migration.13,15,16,22 Moreover, regulation of Rho/Rho-kinase signaling by Cdk5 seems to be a major factor in determining the migration rate, since inhibitors of Cdk5 and Rho-kinase increased lens epithelial cell migration rate equivalently and inhibiting both produced no additional effect.16Interestingly, an independent line of investigation has shown that this is not the only mechanism underlying Cdk5-dependent regulation of cell adhesion and migration. Cdk5 also localizes at focal contacts at the cell periphery and phosphorylates the focal adhesion protein talin.17 The talin phosphorylation site has been identified as S425, near the FERM domain in the talin head region. Upon focal adhesion disassembly, this region is separated from the talin rod domain by calpain-dependent cleavage.23 Phosphorylation at S425 by Cdk5 blocks ubiquitylation and degradation of the talin head by inhibiting interaction with the E3 ligase, Smurf1. This leads, ultimately, to greater stability of lamellipodia and newly formed focal adhesions, thus strengthening adhesion to the substrate.17 Although the exact molecular events involved in this stabilization are not yet clear, it has been suggested that the talin head may “prime” integrins to bind full length talin.24 One possible scenario describing how this might occur is shown in Figure 2. By permitting the isolated head region to escape degradation following calpain cleavage, Cdk5-dependent phosphorylation may stablize a pool of talin head domains to bind focal contacts within the lamellipodium. It is known that the isolated talin head region can bind and activate integrins during cell protrusion.25 The resulting integrin activation would be expected to stabilize the lamellipodium by strengthening integrin-dependent adhesion. Since the head domain lacks sites for actin binding, which are located in the talin rod domain,26 the bound head domain would have to be replaced by full length talin to enable focal adhesion attachment to the cytoskeleton.25 The head domain might promote this replacement by recruiting the PIP-kinase needed to generate PI(4,5) P2,23 which facilitates binding of full length talin to integrin by exposing the auto-inhibited integrin binding sites.27 The binding of full length talin and the resulting link between the integrins and the actin cytoskeleton would then further strengthen adhesion.25 This model predicts that full length talin would bind poorly in the absence of Cdk5 activity, due to degradation of the talin head and the resulting limited availability of PI(4,5)P2, and thus provides a possible explanation for the observed rapid turnover of peripheral focal adhesions.17 Clearly, other models may be proposed to explain the increase in adhesion produced by talin head phosphorylation, and deciding among them will be an active area for future investigation. Nonetheless, it is now certain that talin is a key substrate for Cdk5 at focal adhesions.Open in a separate windowFigure 2Mechanism of Cdk5-dependent regulation of cell adhesion and migration. Binding of p35 to Cdk5 forms the active Cdk5/p35 kinase, which regulates cell adhesion and migration in two distinct ways. Cdk5-dependent phosphorylation of the talin head domain at Ser425 prevents its ubiquitylation and degradation, allowing it to persist following calpain cleavage. The phosphorylated talin head may then bind to integrin at peripheral sites and recruit PIP-K, which converts PI(4)P to PI(4,5)P2. PI(4,5)P2 may promote replacement of the talin head by full length talin. Full length talin recruits other focal adhesion proteins to form the mature focal adhesion. The talin tail provides the site for the actin binding and polymerization. Polymerized actin is subsequently bundled into stress fibers. Cdk5/p35 also regulates the Rho-dependent myosin phosphorylation necessary for stress fiber stability and cytoskeletal contraction by limiting Src activity. This in turn decreases Src-dependent phosphorylation of p190RhoGAP, favoring Rho-GTP formation, Rho-dependent stress fiber polymerization, stabilization and contraction. Both pathways modulate cell migration by increasing adhesive strength.In summary, the presently available data indicate that Cdk5 has at least two distinct functions in cell adhesion (Fig. 2). On the one hand, it stabilizes peripheral focal adhesions and promotes their attachment to the cytoskeleton by phosphorylating the talin head. On the other hand, once the actin cytoskeleton has been organized into stress fibers, Cdk5 enhances the Rho activation essential for stability and contraction of central stress fibers by limiting Src activity. The discovery that Cdk5 is involved in two separate events required for efficient migration, suggests that it may coordinate multiple signaling pathways. The known involvement of Cdk5 and its activator, p35, in regulating microtubule stability suggests yet another mechanism by which Cdk5 activity may regulate cytoskeletal function. Microtubules are closely associated with stress fibers28 and their depolymerization has been shown to release the Rho activating protein, GEF-H1, leading to Rho activation and Rho-dependent myosin contraction.6 Since cell adhesion and migration play an important role in the progression of many pathological conditions, Cdk5, its substrates and its downstream effectors involved in cell adhesion may provide novel targets for therapeutic intervention.15,29  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号