首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased oxidative stress is believed to be one of the mechanisms responsible for hyperglycemia-induced tissue damage and diabetic complications. In these studies, we undertook to characterize glucose uptake and oxidative stress in adipocytes of type 2 diabetic animals and to determine whether these promote the activation of PKC-delta. The adipocytes used were isolated either from C57Bl/6J mice that were raised on a high-fat diet (HF) and developed obesity and insulin resistance or from control animals. Basal glucose uptake significantly increased (8-fold) in HF adipocytes, and this was accompanied with upregulation of GLUT1 expression levels. Insulin-induced glucose uptake was inhibited in HF adipocytes and GLUT4 content reduced by 20% in these adipocytes. Reactive oxygen species (ROS) increased twofold in HF adipocytes compared with control adipocytes and were largely reduced with decreased glucose concentrations. At zero glucose, ROS levels were reduced to the normal levels seen in control adipocytes. The activity of PKC-delta increased twofold in HF adipocytes compared with control adipocytes and was further activated by H2O2. Moreover, PKC-delta activity was inhibited in HF adipocytes either by glucose deprivation or by treatment with the antioxidant N-acetyl-l-cysteine. In summary, we propose that increased glucose intake in HF adipocytes increases oxidative stress, which in turn promotes the activation of PKC-delta. These consequential events may be responsible, at least in part, for development of HF diet-induced insulin resistance in the fat tissue.  相似文献   

2.
Membrane potential in oxygen-sensitive type I cells in carotid body is controlled by diverse sets of voltage-dependent and -independent K(+) channels. Coupling of Po(2) to the open-closed state of channels may involve production of reactive oxygen species (ROS) by NADPH oxidase. One hypothesis suggests that ROS are produced in proportion to the prevailing Po(2) and a subset of K(+) channels closes as ROS levels decrease. We evaluated ROS levels in normal and p47(phox) gene-deleted [NADPH oxidase knockout (KO)] type I cells using the ROS-sensitive dye dihydroethidium (DHE). In normal cells, hypoxia elicited an increase in ROS, which was blocked by the specific NADPH oxidase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF, 3 mM). KO type I cells did not respond to hypoxia, but the mitochondrial uncoupler azide (5 microM) elicited increased fluorescence in both normal and KO cells. Hypoxia had no effect on ROS production in sensory and sympathetic neurons. Methodological control experiments showed that stimulation of neutrophils with a cocktail containing the chemotactic peptide N-formyl-Met-Leu-Phe (1 microM), arachidonic acid (10 microM), and cytochalasin B (5 microg/ml) elicited a rapid increase in DHE fluorescence. This response was blocked by the NADPH oxidase inhibitor diphenyleneiodonium (10 microM). KO neutrophils did not respond; however, azide (5 microM) elicited a rapid increase in fluorescence. Physiological studies in type I cells demonstrated that hypoxia evoked an enhanced depression of K+ current and increased intracellular Ca2+ levels in KO vs. normal cells. Moreover, AEBSF potentiated hypoxia-induced increases in intracellular Ca2+ and enhanced the depression of K+ current in low O(2). Our findings suggest that local compartmental increases in oxidase activity and ROS production inhibit the activity of type I cells by facilitating K+ channel activity in hypoxia.  相似文献   

3.
Hypoxia favored the preservation of progenitor characteristics of hematopoietic stem and progenitor cells (HSPCs) in bone marrow. This work aimed at studying the role of reactive oxygen species (ROS)-generating NADPH oxidase system regulated by hypoxia in ex vivo cultures of cord blood CD34+ cells. The results showed that NADPH oxidase activity and ROS generation were reduced in hypoxia with respect to normal oxygen tension. Meanwhile the ROS generation was found to be inhibited by diphenyleneiodonium (the NADPH oxidase inhibitor), or N-acetylcysteine (the ROS scavenger). Accordingly NADPH oxidase mRNA and p67 protein levels decreased in hypoxia. The analysis of progenitor characteristics, including the proportion of cultured cells expressing the HSPCs marker CD34+CD38, colony production ability of the colony-forming cells (CFCs), and the re-expansion capability of the cultured CD34+ cells, showed that either 5% pO2 or reduced ROS favored preserving the characteristics of CD34+ progenitors, and promoted the expansion of CD34+CD38 cells as well. The above results demonstrated that hypoxia effectively maintained biological characteristics of CD34+ cells through keeping lower intracellular ROS levels by regulating NADPH oxidase.  相似文献   

4.
5.
Taurine has been shown to prevent cardiomyocyte apoptosis. This study investigated the effects of taurine on NADPH oxidase and calpain activation in mediating apoptosis in cardiomyocytes. Apoptosis was induced by norepinephrine (NE) in cultured adult rat ventricular cardiomyocytes. NE (5 microM) increased NADPH oxidase activation and reactive oxygen species (ROS) production and induced apoptosis. These effects of NE on cardiomyocytes were diminished by taurine (0.5 mg/kg) but not beta-alanine. Inhibition of gp91(phox)-NADPH oxidase or ROS production protected cardiomyocytes from apoptosis. NE also induced calpain-1 activation in cardiomyocytes. This effect of NE on calpain was abrogated by gp91(phox)-NADPH oxidase inhibition or ROS scavengers and was mimicked by H(2)O(2) (25 microM) in cardiomyocytes. Pharmacological inhibitors of calpain or overexpression of calpastatin, a specific calpain inhibitor, blocked calpain activation and prevented cardiomyocyte apoptosis during NE stimulation. Furthermore, taurine treatment inhibited NE- or H(2)O(2)-induced calpain activation in cardiomyocytes. In conclusion, NADPH oxidase induces calpain activation, leading to apoptosis in NE-induced cardiomyocytes. Taurine inhibits NADPH oxidase and calpain activation. Thus, inhibition of NADPH oxidase-mediated calpain activation may be an important mechanism for taurine's antiapoptotic action in cardiomyocytes.  相似文献   

6.
There is increasing evidence that intracellular reactive oxygen species (ROS) play a role in cell signaling and that the NADPH oxidase is a major source of ROS in endothelial cells. At low concentrations, agonist stimulation of membrane receptors generates intracellular ROS and repetitive oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) in human endothelial cells. The present study was performed to examine whether ROS are important in the generation or maintenance of [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC) stimulated by histamine. Histamine (1 microm) increased the fluorescence of 2',7'-dihydrodichlorofluorescin diacetate in HAEC, an indicator of ROS production. This was partially inhibited by the NADPH oxidase inhibitor diphenyleneiodonium (DPI, 10 microm), by the farnesyltransferase inhibitor H-Ampamb-Phe-Met-OH (2 microm), and in HAEC transiently expressing Rac1(N17), a dominant negative allele of the protein Rac1, which is essential for NADPH oxidase activity. In indo 1-loaded HAEC, 1 microm histamine triggered [Ca(2+)](i) oscillations that were blocked by DPI or H-Ampamb-Phe-Met-OH. Histamine-stimulated [Ca(2+)](i) oscillations were not observed in HAEC lacking functional Rac1 protein but were observed when transfected cells were simultaneously exposed to a low concentration of hydrogen peroxide (10 microm), which by itself did not alter either [Ca(2+)](i) or levels of inositol 1,4,5-trisphosphate (Ins-1,4,5-P(3)). Thus, histamine generates ROS in HAEC at least partially via NADPH oxidase activation. NADPH oxidase-derived ROS are critical to the generation of [Ca(2+)](i) oscillations in HAEC during histamine stimulation, perhaps by increasing the sensitivity of the endoplasmic reticulum to Ins-1,4,5-P(3).  相似文献   

7.
Although obesity is associated with overactivation of the white adipose tissue (WAT) renin-angiotensin system (RAS), a causal link between the latter and systemic insulin resistance is not established. We tested the hypothesis that overexpression of angiotensinogen (Agt) from WAT causes systemic insulin resistance via modulation of adipose inflammation. Glucose tolerance, systemic insulin sensitivity, and WAT inflammatory markers were analyzed in mice overexpressing Agt in the WAT (aP2-Agt mice). Proteomic studies and in vitro studies using 3T3-L1 adipocytes were performed to build a mechanistic framework. Male aP2-Agt mice exhibited glucose intolerance, insulin resistance, and lower insulin-stimulated glucose uptake by the skeletal muscle. The difference in glucose tolerance between genotypes was normalized by high-fat (HF) feeding, and was significantly improved by treatment with angiotensin-converting enzyme (ACE) inhibitor captopril. aP2-Agt mice also had higher monocyte chemotactic protein-1 (MCP-1) and lower interleukin-10 (IL-10) in the WAT, indicating adipose inflammation. Proteomic studies in WAT showed that they also had higher monoglyceride lipase (MGL) and glycerol-3-phosphate dehydrogenase levels. Treatment with angiotensin II (Ang II) increased MCP-1 and resistin secretion from adipocytes, which was prevented by cotreating with inhibitors of the nuclear factor-κB (NF-κB) pathway or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In conclusion, we show for the first time that adipose RAS overactivation causes glucose intolerance and systemic insulin resistance. The mechanisms appear to be via reduced skeletal muscle glucose uptake, at least in part due to Ang II-induced, NADPH oxidase and NFκB-dependent increases in WAT inflammation.  相似文献   

8.
Human immunodeficiency virus (HIV) regulatory protein Tat has pro-oxidant property, which might contribute to Tat-induced long terminal repeat region (LTR) transactivation. However, the intracellular mechanisms whereby Tat triggers ROS production, and the relationship between Tat-induced ROS production and LTR transactivation, are still subject to debate. The present study was undertaken to evaluate the specific effects of Tat on nicotinamide adenine denucleotide phosphate (NADPH) oxidase in MAGI cells, and to determine the specific role of NADPH oxidase in Tat-induced LTR transactivation. Application of Tat to MAGI cells caused increases in ROS formation that were prevented by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2, but not by other inhibitors of pro-oxidant enzymes or siRNA Nox4. Furthermore, inhibition of NADPH oxidase by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2 attenuated Tat-induced p65 phosphorylation and IKK phosphorylation. Phosphatidylinositol 3-kinase/Akt signaling pathway was involved in Tat-induced NADPH oxidase stimulation. Finally, NADPH oxidase inhibitors or Nox2 siRNA, but not control siRNA, inhibited Tat-induced LTR transactivation. Tat-induced HIV-1 LTR transactivation was inhibited in wortmannin or LY294002 treated cells compared to control cells. Together, these data describe a specific and biologically significant signaling component of the MAGI cells response to Tat, and suggest the PI3K/Akt signaling pathway might originate in part with Tat-induced activation of NADPH oxidase and LTR transactivation.  相似文献   

9.
10.
11.
Procyanidins have been associated with a reduced risk of cardiovascular diseases such as atherosclerosis. However, the molecular mechanisms underlying this benefit are not fully understood. Increased reactive oxygen species (ROS) production generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a common problem in different cardiovascular diseases. Our objective was to evaluate the effects of procyanidin-rich fractions from distilled grape pomace on NADPH oxidase activity in human umbilical vein endothelial cells (HUVEC). Three differently polymerized and galloylated procyanidin fractions were analyzed for their NADPH oxidase inhibitory activity in cell lysates and in HUVEC cultures. All of the three fractions, up to 1 μg/ml, equally inhibited isolated NADPH oxidase in HUVEC lysates in a concentration-dependent manner and independently of any superoxide anion scavenging activities. The procyanidin fractions even blocked NADPH oxidase activity in intact HUVEC, inhibiting ROS production at both extra- and intracellular levels. The fractions achieved the same effects that known NADPH oxidase inhibitors, such as diphenylene iodonium and apocynin, but they presented better hydrosolubility. Our results demonstrated that procyanidin from grape pomace inhibit human endothelial NADPH oxidase regardless of their polymerization degree and galloylation percentage. Therefore, procyanidins are suitable NADPH oxidase inhibitors which could serve as models for therapeutic alternatives for cardiovascular diseases.  相似文献   

12.
Reactive oxygen species (ROS) participate in tissue injury after ischemia-reperfusion. Their implication in leukocyte adherence and increase in permeability at the venular side of the microcirculation have been reported, but very little is known about ROS production in arterioles. The objective of this work was to evaluate, in the arteriole wall in vivo, the temporal changes in superoxide anion production during ischemia and reperfusion and to identify the source of this production. Mouse cremaster muscle was exposed to 1 h of ischemia followed by 30 min of reperfusion, and superoxide anion production was assessed by a fluorescent probe, i.e., intracellular dihydroethidium oxidation. During ischemia, we found a significant increase in dihydroethidium oxidation; however, we observed no additional increase in fluorescence during the subsequent reperfusion. This phenomenon was significantly inhibited by pretreatment with superoxide dismutase. Allopurinol (xanthine oxidase inhibitor) or stigmatellin [Q(o)-site (oriented toward the intermembrane space) inhibitor of mitochondrial complex III] or simultaneous administration of these two inhibitors significantly reduced superoxide production during ischemia to 80%, 88%, and 72%, respectively, of that measured in the untreated ischemia-reperfusion group. By contrast, no significant inhibition was found when NADPH oxidase was inhibited by apocynin or when mitochondrial complex I or complex II was inhibited by rotenone or thenoyltrifluoroacetone. A significant increase in ROS was found with antimycin A [Q(i)-site (located in the inner membrane and facing the mitochondrial matrix) inhibitor of mitochondrial complex III]. We conclude that a significant increase in ROS production occurs during ischemia in the arteriolar wall. This increased production involves both a cytoplasmic source (i.e., xanthine oxidase) and the mitochondrial complex III at the Q(o) site.  相似文献   

13.
Angiotensin II (Ang II), protein kinase C (PKC), reactive oxygen species (ROS) generated by NADPH oxidase, the activation of Janus kinase 2 (JAK2), and the polyol pathway play important parts in the hyperproliferation of vascular smooth muscle cells (VSMC), a characteristic feature of diabetic macroangiopathy. The precise mechanism, however, remains unclear. This study investigated the relation between the polyol pathway, PKC-beta, ROS, JAK2, and Ang II in the development of diabetic macroangiopathy. VSMC cultured in high glucose (HG; 25 mm) showed significant increases in the tyrosine phosphorylation of JAK2, production of ROS, and proliferation activities when compared with VSMC cultured in normal glucose (5.5 mm (NG)). Both the aldose reductase specific inhibitor (zopolrestat) or transfection with aldose reductase antisense oligonucleotide blocked the phosphorylation of JAK2, the production of ROS, and proliferation of VSMC induced by HG, but it had no effect on the Ang II-induced activation of these parameters in both NG and HG. However, transfection with PKC-beta antisense oligonucleotide, preincubation with a PKC-beta-specific inhibitor (LY379196) or apocynin (NADPH oxidase-specific inhibitor), or electroporation of NADPH oxidase antibodies blocked the Ang II-induced JAK2 phosphorylation, production of ROS, and proliferation of VSMC in both NG and HG. These observations suggest that the polyol pathway hyperactivity induced by HG contributes to the development of diabetic macroangiopathy through a PKC-beta-ROS activation of JAK2.  相似文献   

14.
15.
Reactive oxygen species (ROS) play a central role in the pathogenesis of many cardiovascular diseases, such as atherosclerosis and hypertension. Endothelial NADPH oxidase is the major source of intracellular ROS. The present study investigated the role of endothelial NADPH oxidase-derived ROS in angiopoietin-1 (Ang-1)-induced angiogenesis. Exposure of porcine coronary artery endothelial cells (PCAECs) to Ang-1 (250 ng/ml) for periods up to 30 min led to a transient and dose-dependent increase in intracellular ROS. Thirty minutes of pretreatment with the NADPH oxidase inhibitors diphenylene iodinium (DPI, 10 microM) and apocynin (200 microM) suppressed Ang-1-stimulated ROS. Pretreatment with either DPI or apocynin also significantly attenuated Ang-1-induced Akt and p44/42 MAPK phosphorylation. In addition, inhibition of NADPH oxidase significantly suppressed Ang-1-induced endothelial cell migration and sprouting from endothelial spheroids. Using mouse heart microvascular endothelial cells from wild-type (WT) mice and mice deficient in the p47(phox) component of NADPH oxidase (p47(phox-/-)), we found that although Ang-1 stimulated intracellular ROS, Akt and p42/44 MAPK phosphorylation, and cell migration in WT cells, the responses were strikingly suppressed in cells from the p47(phox-/-) mice. Furthermore, exposure of aortic rings from p47(phox-/-) mice to Ang-1 demonstrated fewer vessel sprouts than WT mice. Inhibition of the Tie-2 receptor inhibited Ang-1-induced endothelial migration and vessel sprouting. Together, our data strongly suggest that endothelial NADPH oxidase-derived ROS play a critical role in Ang-1-induced angiogenesis.  相似文献   

16.
17.
A comprehensive study which was undertaken on the effect of three polyamines (PAs) on stomatal closure was examined in relation to nitric oxide (NO) and reactive oxygen species (ROS) levels in guard cells of Arabidopsis thaliana. Three PAs—putrescine (Put), spermidine (Spd), and spermine (Spm)—induced stomatal closure, while increasing the levels of NO as well as ROS in guard cells. The roles of NO and ROS were confirmed by the reversal of closure by cPTIO (NO scavenger) and catalase (ROS scavenger). The presence of L-NAME (NOS-like enzyme inhibitor) reversed PA-induced stomatal closure, suggesting that NOS-like enzyme played a significant role in NO production during stomatal closure. The reversal of stomatal closure by diphenylene iodonium (DPI, NADPH oxidase inhibitor) or 2-bromoethylamine (BEA, copper amine oxidase inhibitor) or 1,12 diaminododecane (DADD, polyamine oxidase inhibitor) was partial. In contrast, the presence of DPI along with BEA/DADD reversed completely the closure by PAs. We conclude that both NO and ROS are essential signaling components during Put-, Spd-, and Spm-induced stomatal closure. The PA-induced ROS production is mediated by both NADPH oxidase and amine oxidase. The rise in ROS appears to be upstream of NO. Ours is the first detailed study on the role of NO and its dependence on ROS during stomatal closure by three major PAs.  相似文献   

18.
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.  相似文献   

19.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. Hyperglycemia-induced oxidative stress is implicated in the etiology of diabetic nephropathy. Resveratrol has potent antioxidative and protective effects on diabetic nephropathy. We aimed to examine whether high glucose (HG)-induced NADPH oxidase activation and reactive oxygen species (ROS) production contribute to glomerular mesangial cell proliferation and fibronectin expression and the effect of resveratrol on HG action in mesangial cells. By using rat mesangial cell line and primary mesangial cells, we found that NADPH oxidase inhibitor (apocynin) and ROS inhibitor (N-acetyl cysteine) both inhibited HG-induced mesangial cell proliferation and fibronectin expression. HG-induced elevation of NADPH oxidase activity and production of ROS in mesangial cells was inhibited by apocynin. These results suggest that HG induces mesangial cell proliferation and fibronectin expression through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunits p22(phox) and p47(phox) expression through JNK/NF-κB pathway, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced mesangial cell proliferation and fibronectin expression through inhibiting HG-induced JNK and NF-κB activation, NADPH oxidase activity elevation and ROS production. These results demonstrate that HG enhances mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide novel therapeutic targets for diabetic nephropathy.  相似文献   

20.
Salt imposes immediate problems for plant cells, such as osmotic stress, impaired ion homeostasis and sodium toxicity, followed by a secondary oxidative stress caused by generation of reactive oxygen species (ROS). Here, we analyzed the production of ROS during salt stress. We show that salt stress triggered plasma membrane internalization, resulting in the production of ROS within endosomes. The intracellular ROS were produced by NADPH oxidase in response to the ionic but not the osmotic stress. Both endocytosis and ROS production were suppressed in phosphatidylinositol (PtdIns) 3-kinase (PI3K) mutants, PI3K being a key regulator of vesicle trafficking in animals and plants, and by wortmannin, which is a specific inhibitor of PI3K and PI4K. Endocytosis and the production of ROS were rescued by supplementation of seedlings with exogenous PtdIns 3-phosphate (PtdIns3P), less with PtdIns4P, but not with PtdIns(4,5)P(2). Surprisingly, despite reduced oxidative stress, the mutants and the wortmannin-treated plants exhibited a phenotype overly sensitive to salt, as also resulted from treatment with diphenyleneiodonium, a suicide inhibitor of NADPH oxidase, suggesting a positive role for ROS in salt tolerance. In summary, our results show that salt stress responses, such as increased plasma membrane endocytosis and the intracellular production of ROS, are coordinated by phospholipid-regulated signaling pathways, and suggest that ROS act in the signal transduction of the salt tolerance response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号