首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
内源褪黑素对人类和其他哺乳动物的节律行为具有调控功能。生物节律是自然进化赋予生命的基本特征之一,生物体的生命活动受到生物节律的控制与影响。在哺乳动物中,节律调控中心是松果体,其主要功能是合成和分泌褪黑素。褪黑素广泛参与生物体节律行为的调节,本文从褪黑素的产生和作用机制,分别阐述褪黑素对昼夜节律行为和多种年节律行为的调控作用,同时明确褪黑素与生物钟及神经内分泌系统的直接作用和反馈互动的复杂集合,进一步揭示褪黑素调控生物节律的重要作用,以期为褪黑素的基础研究以及未来探究生物体的生物钟内源性发生机制提供参考。  相似文献   

2.
Melatonin is a ubiquitous molecule and widely distributed in nature, with functional activity occurring in unicellular organisms, plants, fungi and animals. In most vertebrates, including humans, melatonin is synthesized primarily in the pineal gland and is regulated by the environmental light/dark cycle via the suprachiasmatic nucleus. Pinealocytes function as 'neuroendocrine transducers' to secrete melatonin during the dark phase of the light/dark cycle and, consequently, melatonin is often called the 'hormone of darkness'. Melatonin is principally secreted at night and is centrally involved in sleep regulation, as well as in a number of other cyclical bodily activities. Melatonin is exclusively involved in signaling the 'time of day' and 'time of year' (hence considered to help both clock and calendar functions) to all tissues and is thus considered to be the body's chronological pacemaker or 'Zeitgeber'. Synthesis of melatonin also occurs in other areas of the body, including the retina, the gastrointestinal tract, skin, bone marrow and in lymphocytes, from which it may influence other physiological functions through paracrine signaling. Melatonin has also been extracted from the seeds and leaves of a number of plants and its concentration in some of this material is several orders of magnitude higher than its night-time plasma value in humans. Melatonin participates in diverse physiological functions. In addition to its timekeeping functions, melatonin is an effective antioxidant which scavenges free radicals and up-regulates several antioxidant enzymes. It also has a strong antiapoptotic signaling function, an effect which it exerts even during ischemia. Melatonin's cytoprotective properties have practical implications in the treatment of neurodegenerative diseases. Melatonin also has immune-enhancing and oncostatic properties. Its 'chronobiotic' properties have been shown to have value in treating various circadian rhythm sleep disorders, such as jet lag or shift-work sleep disorder. Melatonin acting as an 'internal sleep facilitator' promotes sleep, and melatonin's sleep-facilitating properties have been found to be useful for treating insomnia symptoms in elderly and depressive patients. A recently introduced melatonin analog, agomelatine, is also efficient for the treatment of major depressive disorder and bipolar affective disorder. Melatonin's role as a 'photoperiodic molecule' in seasonal reproduction has been established in photoperiodic species, although its regulatory influence in humans remains under investigation. Taken together, this evidence implicates melatonin in a broad range of effects with a significant regulatory influence over many of the body's physiological functions.  相似文献   

3.
The pineal product melatonin is involved in the regulation of the sleep/wake cycle in humans. In blind individuals and in people travelling through time zones, melatonin rhythms are sometimes unsynchronized with the diel cycle, and nocturnal sleep may be disturbed. Low or distorted melatonin rhythms have repeatedly been reported in middle aged and elderly insomniacs. Melatonin administration effectively synchronized the sleep wake cycle in blind individuals and in subjects suffering from jet lag and advanced sleep onset in subjects suffering from delayed sleep phase syndrome. In elderly insomniacs, melatonin replacement therapy significantly decreased sleep latency, and/or increased sleep efficiency and decreased wake time after sleep onset. In addition, melatonin substitution facilitated benzodiazepine discontinuation in chronic users. These data show an association between melatonin rhythm disturbances and difficulties to promote or maintain sleep at night. Specific melatonin formulations may be useful to treat circadian-rhythm-related sleep disorders and age-related insomnia.  相似文献   

4.

Background

Melatonin is a hormone which is produced from pineal gland in human and is said to have various impacts in human body like controlling sleep wake cycle, regulating the immune and cardiovascular system and regulating the peripheral organ functioning to name a few. Researchers have reported that the melatonin levels correlates with cancer risks.

Objective

In this review article, focus has been given to the therapeutic applications and impact of melatonin hormone in human behavior and physiologic activities. Through this article we aim in compiling the scattered information regarding melatonin and its various aspects of importance in human system.

Methods

We made an analysis of existing hypothesis and studies published on melatonin and circadian rhythm, factors effecting Melatonin secretions in body, sleep disturbances and cancer risks and melatonin therapy in cancer patients.

Results

Melatonin’s role as an endogenous synchronizer, growing evidence suggests its anti-oxidative activity as well as its having a role in modulating immune responses. Fluctuating melatonin levels can be boosted by ingesting products containing melatonin. A large portion of the examinations detailed by the researchers clearly conclude that keeping up an impeccable sleep-wake cycle and having a healthy diet is extremely important to keep up the regular melatonin levels and in order to stay fit.

Conclusions

Melatonin is considered as a critical hormone that controls and regulates many functions in our body. Melatonin production is emphatically related to the night time duration. Its most absolute biological role is to convey information to the body about day length for a variety of physiologic functions. In addition to melatonin’s role as an endogenous synchronizer, growing evidence suggests its anti-oxidative activity as well as its having a role in modulating immune responses. At present, a growing interest is focused on the validity of the anti-tumor mechanisms of melatonin.
  相似文献   

5.
Preservation of sleep, a proper nutrition and adequate physical exercise are key elements for healthy aging. Aging causes sleep alterations, and in turn, sleep disturbances lead to numerous pathophysiological changes that accelerates the aging process. In the central nervous system, sleep loss impairs the clearance of waste molecules like amyloid-β or tau peptides. Melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, is effective both as a chronobiotic and a cytoprotective agent to maintain a healthy aging. The late afternoon increase of melatonin “opens the sleep doors” every night and its therapeutic use to preserve slow wave sleep has been demonstrated. Melatonin reverses inflammaging via prevention of insulin resistance, suppression of inflammation and down regulation of proinflammatory cytokines. Melatonin increases the expression of α- and γ-secretase and decreases β-secretase expression. It also inhibits tau phosphorylation. Clinical data support the efficacy of melatonin to treat Alzheimer’s disease, particularly at the early stages of disease. From animal studies the cytoprotective effects of melatonin need high doses to become apparent (i.e. in the 40–100 mg/day range). The potentiality of melatonin as a nutraceutical is discussed.  相似文献   

6.
Melatonin is a lipophilic hormone, mainly produced and secreted at night by the pineal gland. Melatonin synthesis is under the control of postganglionic sympathetic fibers that innervates the pineal gland. Melatonin acts via high affinity G protein-coupled membrane receptors. To date, three different receptor subtypes have been identified in mammals: MT1 (Mel 1a) and MT2 (Mel 1b) and a putative binding site called MT3. The chronobiotic properties of the hormone for resynchronization of sleep and circadian rhythms disturbances has been demonstrated both in animal models or in clinical trials. Several other physiological effects of melatonin in different peripheral tissues have been described in the past years. In this way, it has been demonstrated that the hormone is involved in the regulation of seasonal reproduction, body weight and energy balance. This contribution has been focused to review some of the physiological functions of melatonin as well as the role of the hormone in the regulation of energy balance and its possible involvement in the development of obesity.  相似文献   

7.
褪黑素最初是在动物中发现的一种吲哚类小分子,具有昼夜节律调节、清除自由基等多种生理功能,还具有改善睡眠的保健作用。后来在植物中也检测到了褪黑素,这表明植物也能合成褪黑素。随着对植物褪黑素的深入研究,发现褪黑素在调控植物生长发育、耐受干旱、高温、低温、高盐、重金属等非生物胁迫、抵御细菌和真菌病害方面具有重要作用。从植物褪黑素合成途径、生长发育调控和胁迫应答反应方面的研究进展进行了综述,以期为植物褪黑素研究提供参考。  相似文献   

8.
Sleep-wake cycle is the predominant example of circadian rhythms. Melatonin is commonly used to treat insomnia and in additional neurodevelopmental disorders in which sleep disturbance is frequent. In mammals, melatonin receptors are present in the membrane and cell nucleus of many tissues and systems where it exhibits various actions, including the regulation of circadian rhythms. The rhythmic pattern of melatonin secretion is imperative since it endows with vital information to the organism concerning time, which permits for alterations of a number of physiological functions consistent with daily and seasonal variations. Melatonin as well has sleep promoting effects demonstrated in changes in brain activation patterns and tiredness generation. The SCN’s (suprachiasmatic nuclei) function and melatonin production capability turns down with age consequently depriving the brain from an important time cue and sleep regulator.  相似文献   

9.
Pancreatic cancer has a high mortality rate due to the absence of early symptoms and subsequent late diagnosis; additionally, pancreatic cancer has a high resistance to radio- and chemotherapy. Multiple inflammatory pathways are involved in the pathophysiology of pancreatic cancer. Melatonin an indoleamine produced in the pineal gland mediated and receptor-independent action is the pancreas and other where has both receptors. Melatonin is a potent antioxidant and tissue protector against inflammation and oxidative stress. In vivo and in vitro studies have shown that melatonin supplementation is an appropriate therapeutic approach for pancreatic cancer. Melatonin may be an effective apoptosis inducer in cancer cells through regulation of a large number of molecular pathways including oxidative stress, heat shock proteins, and vascular endothelial growth factor. Limited clinical studies, however, have evaluated the role of melatonin in pancreatic cancer. This review summarizes what is known regarding the effects of melatonin on pancreatic cancer and the mechanisms involved.  相似文献   

10.
Free radicals and other reactive species are involved in normal ovarian physiology. However, they are also highly reactive with complex cellular molecules (proteins, lipids, and DNA) and alter their functions leading to oxidative stress. Oxidative damage may play a prominent role in the development of disorders that considerably influence female fertility. Melatonin, because of its amphiphilic nature that allows for crossing morphophysiological barriers, is an effective antioxidant for protecting macromolecules against oxidative stress caused by reactive species. The balance between reactive oxygen species and antioxidants within the follicle seems to be critical to the function of the oocyte and granulosa cells and evidence has accumulated showing that melatonin is involved in the protection of these cells. Melatonin appears to have varied functions at different stages of follicle development, oocyte maturation, and luteal stage. Melatonin concentration in the growing follicle may be an important factor in avoiding atresia, because melatonin in the follicular fluid reduces apoptosis of critical cells. Melatonin also has protective actions during oocyte maturation reducing intrafollicular oxidative damage. An association between melatonin concentrations in follicular fluid and oocyte quality has been reported; this would allow a preovulatory follicle to fully develop and provide a competent oocyte for fertilization. The functional role of reactive species and the cytoprotective properties of melatonin on the ovary from oxidative damage are summarized in this brief review.  相似文献   

11.
Melatonin increases sleepiness, decreases core temperature, and increases peripheral temperature in humans. Melatonin may produce these effects by activating peripheral receptors or altering autonomic activity. The latter hypothesis was investigated in 16 supine subjects. Three conditions were created by using bright light and exogenous melatonin: normal endogenous, suppressed, and pharmacological melatonin levels. Data during wakefulness from 1.5 h before to 2.5 h after each subject's estimated melatonin onset (wake time + 14 h) were analyzed. Respiratory sinus arrhythmia (cardiac parasympathetic activity) and preejection period (cardiac sympathetic activity) did not vary among conditions. Pharmacological melatonin levels significantly decreased systolic blood pressure [5.75 +/- 1.65 (SE) mmHg] but did not significantly change heart rate. Suppressed melatonin significantly increased rectal temperature (0.27 +/- 0.06 degrees C), decreased foot temperature (1.98 +/- 0.70 degrees C), and increased sleep onset latency (5.53 +/- 1.87 min). Thus melatonin does not significantly alter cardiac autonomic activity and instead may bind to peripheral receptors in the vasculature and heart. Furthermore, increases in cardiac parasympathetic activity before normal nighttime sleep cannot be attributed to the concomitant increase in endogenous melatonin.  相似文献   

12.
目的:研究褪黑素受体和GABAA受体在褪黑素延长小鼠睡眠时间中的作用。方法:以翻正反射消失为睡眠开始的指标,至翻正反射恢复作为睡眠时间。观察不同受体激动剂或拮抗剂对褪黑素催眠作用的影响。结果:褪黑素3型受体拮抗剂盐酸哌唑嗪对褪黑素延长小鼠睡眠时间的作用无明显影响。GABA受体内源性激动剂GABA能明显增强褪黑素延长小鼠睡眠时间的作用,而GABAA受体上的印防己毒素结合位点的配基,即氯离子通道阻断剂印防己毒素能明显拮抗褪黑素的催眠作用,GABAA受体上的GABA结合位点的拮抗剂荷包牡丹碱则对褪黑素延长小鼠睡眠作用无明显影响。结论:褪黑素延长小鼠睡眠时间的作用与褪黑素3型受体无关,而与GABAA受体关系密切,其作用主要由印防己毒素结合位点介导。  相似文献   

13.
Thermoregulatory processes have long been implicated in the initiation of human sleep. In this paper, we review our own studies conducted over the last decade showing a crucial role for melatonin as a mediator between the thermoregulatory and arousal system in humans. Distal heat loss, via increased skin temperature, seems to be intimately coupled with increased sleepiness and sleep induction. Exogenous melatonin administration during the day when melatonin is essentially absent mimics the endogenous thermophysiological processes occurring in the evening and induces sleepiness. Using a cold thermic challenge test, it was shown that melatonin‐induced sleepiness occurs in parallel with reduction in the thermoregulatory set‐point (threshold); thus, melatonin may act as a circadian modulator of the thermoregulatory set‐point. In addition, an orthostatic challenge can partially block the melatonin‐induced effects, suggesting an important role of the sympathetic nervous system as a link between the thermoregulatory and arousal systems. A topographical analysis of finger skin temperature with infrared thermometry revealed that the most distal parts of the fingers, i.e., fingertips, represent the important skin regions for heat loss regulation, most probably via opening the arteriovenous anastomoses, and this is clearly potentiated by melatonin. Taken together, melatonin is involved in the fine‐tuning of vascular tone in selective vascular beds, as circulating melatonin levels rise and fall throughout the night. Besides the role of melatonin as “nature's soporific”, it can also serve as nature's nocturnal vascular modulator.  相似文献   

14.
Melatonin, a ‘hormone of darkness,’ has been reported to play a role in a wide variety of physiological responses including reproduction, circadian homeostasis, sleep, retinal neuromodulation, and vasomotor responses. Our recent studies reported a prophylactic effect of exogenous melatonin against radiation-induced neurocognitive changes. However, there is no reported evidence for a mitigating effect of chronic melatonin administration against radiation-induced behavioral alterations. In the present study, C57BL/6 mice were given either whole day chronic melatonin administration (CMA) or chronic night-time melatonin administration (CNMA) by a low dose of melatonin in drinking water for a period of 2 weeks and 1 month following exposure to 6 Gy of γ-radiation. Various behavioral endpoints, such as locomotor activities, gross behavioral traits, basal anxiety level, and depressive tendencies were scored at different time points. Radiation exposure significantly impaired gross behavioral traits as observed in the open field exploratory paradigms and forced swim test. Both the CMA and CNMA significantly ameliorated the radiation-induced changes in exploratory tendencies, risk-taking behavior and gross behavior traits, such as rearing and grooming. Melatonin administration afforded anxiolytic function against radiation in terms of center exploration tendencies. The radiation-induced augmentation of immobility time in the forced swim test, indices of depression-like behavior was also inhibited by chronic melatonin administration. The results demonstrated the mitigating effect of chronic melatonin administration on radiation-induced affective disorders in mice.  相似文献   

15.
Melatonin is the hormonal mediator of photoperiodic information to the central nervous system in vertebrates and allows the regulation of energy homeostasis through the establishment of a proper balance between energy intake and energy expenditure. The aim of this study was to evaluate the role of melatonin in appetite central control analyzing the involvement of this hormone in the regulation of feeding behavior in the zebrafish Danio rerio. For this purpose, the effect of two different melatonin doses (100 nM and 1 μM) administered for 10 days, via water, to zebrafish adults was evaluated at both physiological and molecular level and the effect of melatonin was considered in relation to the most prominent systems involved in appetite regulation. For the first time, in fact, melatonin control of food intake by the modulation of leptin, MC4R, ghrelin, NPY and CB1 gene expression was evaluated.The results obtained indicate that melatonin significantly reduces food intake and the reduction is in agreement with the changes observed at molecular level. A significant increase in genes codifying for molecules involved in feeding inhibition, such as leptin and MC4R, and a significant reduction in the major orexigenic signals including ghrelin, NPY and CB1 are showed here.Taken together these results support the idea that melatonin falls fully into the complex network of signals that regulate food intake thus playing a key role in central appetite regulation.  相似文献   

16.
慢波睡眠的激素与细胞因子调节   总被引:7,自引:0,他引:7  
Li LH  Ku BS 《生理科学进展》2000,31(1):30-34
慢波睡眠(SWS)是最重要的睡眠成分。近年来的研究揭示:腹外侧视前区-结节乳头核(VLPO-TMN)可能是睡眠-觉醒的中枢发生部位。基底前脑吻端前列腺素D2(PGD2)敏感性睡眠促进区(PGD2-SPZ)参与睡眠的皖控。PGD2延长SWS;前列腺素E2(PGE2)延长觉醒,抑制SWS和快动眼睡眠(REMS)。SWS与下丘脑-垂体-肾上腺皮质轴的活动呈负相关,与生长激素的分泌呈正相关。褪黑素(mel  相似文献   

17.

Background

Spinal fusion surgery is currently recommended when curve magnitude exceeds 40–45 degrees. Early attempts at spinal fusion surgery which were aimed to leave the patients with a mild residual deformity, failed to meet such expectations. These aims have since been revised to the more modest goals of preventing progression, restoring 'acceptability' of the clinical deformity and reducing curvature. In view of the fact that there is no evidence that health related signs and symptoms of scoliosis can be altered by spinal fusion in the long-term, a clear medical indication for this treatment cannot be derived. Knowledge concerning the rate of complications of scoliosis surgery may enable us to establish a cost/benefit relation of this intervention and to improve the standard of the information and advice given to patients. It is also hoped that this study will help to answer questions in relation to the limiting choice between the risks of surgery and the "wait and see – observation only until surgery might be recommended", strategy widely used. The purpose of this review is to present the actual data available on the rate of complications in scoliosis surgery.

Materials and methods

Search strategy for identification of studies; Pub Med and the SOSORT scoliosis library, limited to English language and bibliographies of all reviewed articles. The search strategy included the terms; 'scoliosis'; 'rate of complications'; 'spine surgery'; 'scoliosis surgery'; 'spondylodesis'; 'spinal instrumentation' and 'spine fusion'.

Results

The electronic search carried out on the 1st February 2008 with the key words "scoliosis", "surgery", "complications" revealed 2590 titles, which not necessarily attributed to our quest for the term "rate of complications". 287 titles were found when the term "rate of complications" was used as a key word. Rates of complication varied between 0 and 89% depending on the aetiology of the entity investigated. Long-term rates of complications have not yet been reported upon.

Conclusion

Scoliosis surgery has a varying but high rate of complications. A medical indication for this treatment cannot be established in view of the lack of evidence. The rate of complications may even be higher than reported. Long-term risks of scoliosis surgery have not yet been reported upon in research. Mandatory reporting for all spinal implants in a standardized way using a spreadsheet list of all recognised complications to reveal a 2-year, 5-year, 10-year and 20-year rate of complications should be established. Trials with untreated control groups in the field of scoliosis raise ethical issues, as the control group could be exposed to the risks of undergoing such surgery.  相似文献   

18.
Melatonin is a ubiquitous indole amine that plays a fundamental role in the regulation of the biological rhythm. Disrupted circadian rhythm alters the expression of clock genes and deregulates oncogenes, which finally promote tumor development and progression. An evidence supporting this notion is the higher risk of developing malignancies among night shift workers. Circadian secretion of the pineal hormone also synchronizes the immune system via a reciprocal association that exists between the immune system and melatonin. Immune cells are capable of melatonin biosynthesis in addition to the expression of its receptors. Melatonin induces big changes in different immune cell proportions, enhances their viability and improves immune cell metabolism in the tumor microenvironment. These effects might be directly mediated by melatonin receptors or indirectly through alterations in hormonal and cytokine release. Moreover, melatonin induces apoptosis in tumor cells via the intrinsic and extrinsic pathways of apoptosis, while it protectsthe immune cells. In general, melatonin has a profound impact on immune cell trafficking, cytokine production and apoptosis induction in malignant cells. On such a basis, using melatonin and resynchronization of sleep cycle may have potential implications in immune function enhancement against malignancies, which will be the focus of the present paper.  相似文献   

19.
To review the interaction between melatonin and the dopaminergic system in the hypothalamus and striatum and its potential clinical use in dopamine-related disorders in the central nervous system. Medline-based search on melatonin–dopamine interactions in mammals. Melatonin, the hormone produced by the pineal gland atnight, influences circadian and seasonal rhythms, most notably the sleep–wake cycle and seasonal reproduction. The neurochemical basis of these activities is not understood yet. Inhibition of dopamine release by melatonin has been demonstrated in specific areas of the mammalian central nervous system (hypothalamus, hippocampus, medulla-pons, and retina). Antidopaminergic activities of melatonin have been demonstrated in the striatum. Dopaminergic transmission has a pivotal role in circadian entrainment of the fetus, in coordination of body movement and reproduction. Recent findings indicate that melatonin may modulate dopaminergic pathways involved in movement disorders in humans. In Parkinson patients melatonin may, on the one hand, exacerbate symptoms (because of its putative interference with dopamine release) and, on the other, protect against neurodegeneration (by virtue of its antioxidant properties and its effects on mitochondrial activity). Melatonin appears tobe effective in the treatment of tardive dyskinesia, a severe movement disorder associated with long-term blockade of the postsynaptic dopamine D2 receptor by antipsychotic drugs in schizophrenic patients. The interaction of melatonin with the dopaminergic system may play a significant role in the nonphotic and photic entrainment of the biological clock as well as in the fine-tuning of motor coordination in the striatum. These interactions and the antioxidant nature of melatonin may be beneficial in the treatment of dopamine-related disorders.  相似文献   

20.
Melatonin: A master regulator of plant development and stress responses   总被引:4,自引:0,他引:4  
Melatonin is a pleiotropic molecule with multiple functions in plants. Since the discovery of melatonin in plants, numerous studies have provided insight into the biosynthesis, catabolism, and physiological and biochemical functions of this important molecule. Here, we describe the biosynthesis of melatonin from tryptophan, as well as its various degradation pathways in plants. The identification of a putative melatonin receptor in plants has led to the hypothesis that melatonin is a hormone involved in regulating plant growth,aerial organ development, root morphology, and the floral transition. The universal antioxidant activity of melatonin and its role in preserving chlorophyll might explain its anti-senescence capacity in aging leaves. An impressive amount of research has focused on the role of melatonin in modulating postharvest fruit ripening by regulating the expression of ethylene-related genes.Recent evidence also indicated that melatonin functions in the plant's response to biotic stress,cooperating with other phytohormones and wellknown molecules such as reactive oxygen species and nitric oxide. Finally, great progress has been made towards understanding how melatonin alleviates the effects of various abiotic stresses, including salt, drought, extreme temperature, and heavy metal stress. Given its diverse roles, we propose that melatonin is a master regulator in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号