首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
2.
3.

Introduction

The goals of this study were to examine the oxemic regulation of Wnt signaling to explore whether Wnt signaling accelerates the age-related degeneration of nucleus pulposus cells, and if so, to define the mechanism underlying this effect. We investigated the expression of Klotho, a newly identified antiaging gene, and whether its regulation is attributable to the suppression of Wnt signaling.

Methods

Rat nucleus pulposus cells were cultured under normoxic (21% O2) or hypoxic (2% O2) conditions, and the expression and promoter activity of Wnt signaling and Klotho were evaluated. The effect of Klotho protein was examined with transfection experiments, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, senescence-associated ??-galactosidase staining, and cell-cycle analysis. To determine the methylation status of the Klotho promoter region, bisulfite genomic sequencing analysis was performed. Its relation with the activation of Wnt signaling was assessed. We also examined whether the expression of Klotho could block the effects of pathological Wnt expression in nucleus pulposus cells.

Results

Nucleus pulposus cells exhibited increased ??-catenin mRNA and protein under the hypoxic condition. Klotho protein was expressed in vivo, and protein and messenger RNA expression decreased under the hypoxic condition. Klotho treatment decreased cell proliferation and induced the quiescence of nucleus pulposus cells. In addition, Klotho treatment inhibited expression of ??-catenin gene and protein compared with untreated control cells.

Conclusions

These data indicate that Wnt signaling and Klotho form a negative-feedback loop in nucleus pulposus cells. These results suggest that the expression of Klotho is regulated by the balance between upregulation and downregulation of Wnt signaling.  相似文献   

4.
Hilar cholangiocarcinoma (HCCA) is an invasive hepatic malignancy that is difficult to biopsy; therefore, novel markers of HCCA prognosis are needed. Here, the level of canonical Wnt activation in patients with HCCA, intrahepatic cholangiocarcinoma (IHCC), and congenital choledochal cysts (CCC) was compared to understand the role of Wnt signaling in HCCA. Pathology specimens from HCCA (n=129), IHCC (n=31), and CCC (n=45) patients were used to construct tissue microarrays. Wnt2, Wnt3, β-catenin, TCF4, c-Myc, and cyclin D1 were detected by immunohistochemistry. Parallel correlation analysis was used to analyze differences in protein levels between the HCCA, IHCC, and CCC groups. Univariate and multivariate analyses were used to determine independent predictors of successful resection and prognosis in the HCCA group. The protein levels of Wnt2, β-catenin, TCF4, c-Myc, and cyclin D1 were significantly higher in HCCA compared to IHHC or CCC. Wnt signaling activation (Wnt2+, Wnt3+, nuclear β-catenin+, nuclear TCF4+) was significantly greater in HCCA tissues than CCC tissues. Univariable analyses indicated that expression of cyclin D1 as well as Wnt signaling activation, and partial Wnt activation (Wnt2+ or Wnt3+ and nuclear β-catenin+ or nuclear TCF4+) predicted successful resection, but only cyclin D1 expression remained significant in multivariable analyses. Only partial Wnt activation was an independent predictor of survival time. Proteins in the canonical Wnt signaling pathway were present at higher levels in HCCA and correlated with tumor resecility and patient prognosis. These results suggest that Wnt pathway analysis may be a useful marker for clinical outcome in HCCA.Key words: Hilar cholangiocarcinoma, Wnt signaling pathway, tissue microarray, β-catenin, c-Myc, cyclin D1  相似文献   

5.
6.
7.
8.

Background

Epidemiological and experimental evidence that support the correlation between Type 2 diabetes mellitus (T2D) and increased risks of colorectal cancer formation have led us to hypothesize the existence of molecular crosstalk between insulin and canonical Wnt signaling pathways. Insulin was shown to stimulate Wnt target gene expression, utilizing the effector of the Wnt signaling pathway. Whether insulin affects expression of components of Wnt pathway has not been extensively examined.

Methods

cDNA microarray was utilized to assess the effect of insulin on gene expression profile in the rat intestinal non-cancer IEC-6 cell line, followed by real-time RT-PCR, Western blotting and reporter gene analyses in intestinal cancer and non-cancer cells.

Results

Insulin was shown to alter the expression of a dozen of Wnt pathway related genes including TCF-4 (= TCF7L2) and frizzled- (Fzd-4). The stimulatory effect of insulin on TCF-4 expression was then confirmed by real-time RT-PCR, Western blotting and luciferase reporter analyses, while the activation on Fzd-4 was confirmed by real-time PCR.

General significance

Our observations suggest that insulin may crosstalk with the Wnt signaling pathway in a multi-level fashion, involving insulin regulation of the expression of Wnt target genes, a Wnt receptor, as well as mediators of the Wnt signaling pathway.  相似文献   

9.

Background

Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity.

Methodology/Principal Findings

Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes.

Conclusions/Significance

We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号