首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malate dehydrogenase (MDH; EC 1.1.1.37) was characterized from Thermoleophilum album NM, a gram-negative aerobic bacterium obligate for thermophily and n-alkane substrates. The enzyme was purified by affinity chromatography and electroelution. The MDH had a mol.wt. of 61,000 and consisted of two subunits, each with a mol.wt. of 32,500. T. album NM MDH migrated further on nondenaturing polyacrylamide gels than did other MDHs. The MDH was active from 30°–95° C with optimum activity occurring at 60° C and pH 7.5. Kinetic data were determined at 60° C and pH 7.5. The K m values for malate and NAD were 1.41 mM and 0.26 mM, respectively. The K m for reduction of oxalacetate was 5.43 mM and 0.31 mM for NADH. The amino acid composition of T. album NM MDH differed in the amounts of Arg, Lys, Gly, Pro and His from the MDHs of other thermophilic and mesophilic organism. The N-terminal amino acid sequence had no appreciable homology with MDHs of other species.  相似文献   

2.
Methanobacterium thermoaggregans is a new thermophilic autotrophic rod-shaped methane producing bacterium. The organism likes to form aggregates during growth and utilizes only H2 and CO2 as substrates. Growth optimum is at 65°C with a doubling time of 3.5 h. Optimal growth occurs at pH-values between 7 and 7.5. The addition of yeast extract to the mineral salt medium stimulates growth. The DNA base composition is 42 mol% G+C. The organism was isolated from mud taken from a cattle pasture. Because of its optimal growth temperature and its tendency to form aggregates the nameMethanobacterium thermoaggregans is suggested.Abbreviations G+C Guanine+cytosine  相似文献   

3.
It was the aim of this study to determine the way in which low temperature modifies the effect of a competing grass on nitrogen fixation of a forage legume. White clover (Trifolium repens L.) was grown in monoculture or in different planting ratios with timothy (Phleum pratense L.) or perennial ryegress (Lolium perenne L.) in growth chambers at either 7.5/5°C (LoT) or 15/10°C (HiT) average day/night temperatures, and with 2.5 or 7.5 mM 15N-labelled nitrate in the nutrient solution.Competition with grass led to a marked increase in the proportion of clover nitrogen derived from symbiosis (% Nsym). This increase was slower at LoT where % Nsym was reduced considerably; it was closely related to the reduction in the amount of available nitrate as a result of its being utilized by the grass.Nitrogen concentration in white clover herbage and dry matter yield per clover plant were reduced, for the most part, when a competing grass was present. The amount of nitrogen fixed per plant of white clover decreased markedly with temperature. Low temperature consequently accentuated competition for nitrate. The capacity of white clover to compete successfully was limited by its slower growth and nitrogen accumulation.  相似文献   

4.
Summary Of 45 fermentative gram negative bacterial isolates examined from wheat roots, three were capable of fixing atmospheric nitrogen as determined by the acetylene reduction technique and by protein contents of cells. A gram negative non-motile facultatively anaerobic bacterial strain capable of N2 fixation was identified asKlebsiella oxytoca ZMK-2.Optimal growth and N2 fixation occurred at pH 6.5. The optimum temperatures for growth under anaerobic conditions ranged between 30°–37°C. Acetylene reduction by intact cells was strikingly inhibited by 0.1 atm. or greater partial pressure of O2. Furthermore, the accumulation of H2 in the gas phase over cultures ofKlebsiella oxytoca ZMK-2 at partial pressures greater than 0.02 atm. resulted in a striking inhibition in the rate of C2H2 reduction. The addition of suspensions of eitherKlebsiella oxytoca ZMK-2 orAzotobacter vinelandii or a mixed culture of these two organisms to axenic cultures of wheat plants produced no significant increase in plant growth as measured by plant dry weight or nitrogen content of plants.  相似文献   

5.
The reduction potentials of an engineered CuA azurin in its native and thermally denatured states have been determined using cyclic voltammetry and spectrochemical titrations. Using a 4,4-dipyridyl disulfide modified gold electrode, the reduction potentials of native and thermally denatured CuA azurin are the same within the experimental error (422±5 and 425±5 mV vs. NHE, respectively, in 50 mM ammonium acetate buffer, pH 5.1, 300 mM NaCl, 25 °C), indicating that the potential is that of a nonnative state. In contrast, using a didodecyldimethylammonium bromide (DDAB) film-pyrolytic graphite edge (PGE) electrode, the reduction potentials of native and thermally denatured CuA azurin have been determined to be 271±7 mV (50 mM ammonium acetate buffer, pH 5.1, 4 °C) and 420±1 mV (50 mM ammonium acetate buffer, pH 5.1, 25 °C), respectively. Spectroscopic redox titration using [Ru(NH3)5Py]2+ resulted in a reduction potential (254±4 mV) (50 mM ammonium acetate buffer, pH 5.1, 4 °C) similar to the value obtained using the DDAB film-PGE electrochemical method. Complete reoxidation of [Ru(NH3)5Py]2+-reduced CuA azurin is also consistent with the conclusion that this spectrochemical titration method using [Ru(NH3)5Py]2+ measures the reduction potential of native CuA azurin.Abbreviations CcO cytochrome c oxidase - N2OR nitrous oxide reductase - ET electron transfer - CV cyclic voltammetry - NHE normal hydrogen electrode - DDAB didodecyldimethylammonium bromide - PGE pyrolytic graphite edge  相似文献   

6.
The biology of Phytoseiulus macropilis (Banks) fed on Tetranychus urticae Koch was studied at different temperatures. The total development times averaged 7.5, 5.7, 4.2, 4.2 and 5.6 days at 20, 25, 28, 30 and 32°C, respectively at 78 ± 2% RH and 16 h photoperiod daily. The intrinsic rate of natural increase (r m) and the net reproduction (R o) reached maximum values 0.47 and 88.9, respectively, at 28°C. The mean generation time decreased (20.0-8.8 days) with increasing temperature 20-28°C.  相似文献   

7.
At growth temperatures above 37°C, Klebsiella pneumoniae does not grow in a medium containing N2 or NO 3 - as nitrogen sources. However, both the growth in the presence of other nitrogen sources as well as the in vitro nitrogenase activity are not affected at this temperature. The inability to fix N2 at high temperature is due to the failure of the cells to synthesize nitrogenase and other nitrogen fixation (nif) gene encoded proteins. When cells grown under nitrogen fixing conditions at 30°C were shifted to 39°C, there was a rapid decrease of the rate of de novo biosynthesis of nitrogenase (component 1), nitrogenase reductase (component 2), and the nifJ gene product. There was no degradation of nitrogenase at the elevated temperature since preformed enzyme remained stable over a period of at least 3 h at 39°C. Thus, temperature seems to represent a third control system, besides NH 4 + and O2, governing the expression of nif genes of K. pneumoniae.  相似文献   

8.
Plant growth and adaptation to cold and freezing temperatures in a CO2-enriched atmosphere have received little attention despite the predicted effects of elevated CO2 on plant distribution and productivity. Norway spruce [Picea abies (L.) Karst.] seedlings from latitudinally distinct seed sources (66°N and 60°N) were grown for one simulated growth season under controlled conditions in an atmosphere enriched in CO2 (70 Pa) and at ambient CO2 (40 Pa), combined factorially with low (3.6 mM) or high (15.7 mM) concentrations of nitrogen fertilization. There was a clear difference between the two provenances in height growth, in the timing of bud set, and in freezing tolerance. Nitrogen fertilization increased height growth in both provenances, while CO2 enrichment stimulated height growth only in the southern provenance. We found no significant effects of elevated CO2 or nitrogen fertilization on the timing of bud set. During cold acclimation, freezing tolerance increased from –10°C to –35°C, and there was a marked increase in all soluble sugars except inositol. Elevated CO2 in combination with high nitrogen led to a slight increased freezing tolerance in both provenances during the early stages of cold acclimation. However, towards the end of cold acclimation, elevated CO2 and high nitrogen led to reduced freezing tolerance in the southern provenance, while elevated CO2 and low nitrogen reduced freezing tolerance in the northern provenance. These results suggest that CO2 enrichment influences the development of freezing tolerance, and that these responses differ with available nitrogen and between provenances.  相似文献   

9.
A thermophilic anaerobic which produced methane from formate and H2 and CO2 was isolated from a bench-scale digester treating a mixture of solid wastes at 55°C, after enrichment cultures on sodium acetate. The cells were slightly crooked rods occurring singly or in filaments. The bacterium was not motile, and stained Gram positive. Colonies appearing after 1 week of incubation were white with filamentous edges and 1 mm in diameter. The organism used H2:CO2 or formate as an energy source. Yeast extract was not required but stimulated growth significantly. Casamino acids were stimulatory and could serve as a nitrogen source. Cysteine was used as a sulfur source. The optimum pH for growth was 7.5. Growth occurred from 35 to 70°C with an optimum at 55°C. The deoxyribonucleic acid base composition was 49.2 mol% guanine plus cytosine. Though this isolate conforms to Methanobacterium thermoformicium, its proper assignment awaits further studies. It has been deposited in the Deutsche Sammlung von Mikroorganismen as strain DSM 3012.This work was supported in part by the Conseil Régional Nord/Pas-de-Calais  相似文献   

10.
Bovine intestine alkaline phosphatase (BIALP) is widely used as a signaling enzyme in sensitive assays such as enzyme immunoassay (EIA). In this study, we evaluated the effects of various aminoalcohols and amines on the activity of BIALP in the hydrolysis of p-nitrophenyl phosphate (pNPP) at pH 9.8, at 20 °C. The kcat values at 0.05 M diethanolamine, 0.1 M triethanolamine, and 0.2 M N-methylethanolamine were 190 ± 10, 840 ± 30, and 500 ± 10 s−1, respectively. The kcat values increased with increasing concentrations of diethanolamine, triethanolamine, and N-methylethanolamine and reached 1240 ± 60, 1450 ± 30, and 2250 ± 80 s−1, respectively, at 1.0 M. On the other hand, the kcat values at 0.05-1.0 M ethanolamine, ethylamine, methylamine, and dimethylamine were in the range of 100-600 s−1. These results indicate that diethanolamine, triethanolamine and N-methylethanolamine highly activate BIALP and might be suitable as a dilution buffer of BIALP in EIA. Interestingly, the Km values increased with increasing concentrations of diethanolamine and N-methylethanolamine, but not triethanolamine: the Km value at 1.0 M diethanolamine (0.83 ± 0.15 mM) was 12-fold higher than that at 0.05 M (0.07 ± 0.01 mM), and that at 1.0 M N-methylethanolamine (2.53 ± 0.20 mM) was 14-fold higher than that at 0.2 M (0.18 ± 0.02 mM), while that at 1.0 M triethanolamine (0.31 ± 0.01 mM) was similar as that at 0.2 M (0.25 ± 0.01 mM), suggesting that the mechanisms of BIALP activation are different between the aminoalcohols.  相似文献   

11.
The purpose of this experiment was to determine whether diploid and triploid brook charr, Salvelinus fontinalis, differ in their critical thermal maxima (CTM). Two age classes were tested (underyearlings, having average weight of 25 g, and yearlings, having average weight of 668 g) at two rates of temperature increase (2° C h-1 and 15° C h-1). No effect of ploidy on CTM was found. Fish exposed to the faster rate of temperature increase had higher CTM values than those exposed to the slower rate (underyearlings: 29.5 ± 0.1° C versus 29.1 ± 0.1° C in one trial and 29.8 ± 0.1° C versus 28.3 ± 0.1° C in a second trial; yearlings: 29.3 ± 0.1° C versus 27.7 ± 0.1° C in two trials, p < 0.001 in all cases). Underyearlings had higher CTM values than yearlings (29.2 ± 0.1° C versus 28.5 ± 0.1° C, p < 0.05). Female yearlings, which were immature, had higher CTM values than males, which had previously matured as one-year-olds (28.8 ± 0.1° C versus 28.3 ± 0.1° C, p < 0.001).  相似文献   

12.
Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (NAD-GDH; EC 1.4.1.3) from Amphibacillus xylanus DSM 6626 was enriched 100-fold to homogeneity. The molecular mass was determined by native polyacrylamide electrophoresis and by gel filtration to be 260 kDa (±25 kDa); the enzyme was composed of identical subunits of 45 (±5) kDa, indicating that the native enzyme has a hexameric structure. NAD-GDH was highly specific for the coenzyme NAD(H) and catalyzed both the formation and the oxidation of glutamate. Apparent K m -values of 56 mM glutamate, 0.35 mM NAD (oxidative deamination) and 6.7 mM 2-oxoglutaric acid, 42 mM NH4Cl and 0.036 mM NADH (reductive amination) were measured. The enzyme was unusually resistant towards variation of pH, chaotropic agents, organic solvents, and was stable at elevated temperature, retaining 50% activity after 120 min incubation at 85°C.  相似文献   

13.
Five strains of heterocystous blue-green algae capable of high rates of growth and nitrogenase activity were isolated from shallow coastal environments. Growth of the organisms was characterized with respect to temperature, NaCl concentration in the medium, and nitrogen source. The temperature optima ranged from 35–42°C, and all but one of the strains displayed a requirement for added NaCl. The generation times under N2-fixing conditions were 5.1–5.9 h, and were as low as 3.4 h for growth on NH4Cl. Nitrogenase activity (C2H2 reduction) was high throughout the logarithmic growth phase of each strain. The maximum value observed for one strain was 65.5 nmoles C2H4 produced/mg protein x min, and the average values for the five strains ranged from 24.5–46.7 nmoles C2H4/mg protein x min. The organisms all belong to the genusAnabaena. The growth and nitrogenase activity of these strains are much higher than those of the heterocystous blue-green algae commonly used for investigation of nitrogen metabolism, and they thus should prove to be useful physiological tools. Their prevalence, as judged by the ease of their enrichment and isolation, in bay and estuarine environments suggests that they are important contributors of combined nitrogen.  相似文献   

14.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

15.
Various media and Ca2+ concentrations are employed to culture neural progenitor cells (NPCs). We have therefore explored the effects of extracellular calcium concentrations on the survival, proliferation, spontaneous apoptosis and self-renewal capacity of mesencephalic NPCs grown adherently and as free-floating neurospheres. We employed EMEM supplemented with various concentrations of extracellular CaCl2 (0.1–1 mM). Raising the calcium concentration from 0.1 mM to 0.6 mM resulted in an increased number of NPCs growing as a monolayer and increased the protein yield of cells growing in neurospheres (24±3 μg total proteins in 0.1 mM Ca2+ medium vs. 316±34 μg proteins in 1 mM Ca2+ medium). Concentrations more than 0.6 mM did not result in a further improvement of proliferation or survival. Elimination of calcium from our control medium by 1 mM EGTA resulted in a decrease in cell number from 82±2×104 NPCs/ml observed in control medium to 62±2×104 NPCs/ml observed in calcium-free media. Protein yield dropped significantly in calcium-free media, accompanied by the decreased expression of the proliferation marker PCNA and the pro-survival marker Bcl-2. Two weeks of expansion as neurospheres caused spontaneous cell death in more than 90% of NPCs grown in 0.1 mM CaCl2 EMEM compared with 42% in 1 mM CaCl2 EMEM. Although the action of Ca2+ on NPCs appears to be complex, the presented data strongly suggest that extracellular calcium plays a crucial role in the maintenance of NPCs in a healthy and proliferating state; physiological concentrations (>1.0 mM) are not required, a concentration of 0.5 mM being adequate for cell maintenance.  相似文献   

16.
The effect of temperature and oxygen on diazotrophic growth of the thermophilic cyanobacterium HTF (High Temperature Form) Chlorogloeopsis was investigated using cells grown in light-limited continuous culture at a dilution rate of 0.02 h-1. Diazotrophy was more sensitive to elevated temperatures than growth with combined nitrogen. The maximum temperature for growth of cultures gassed with CO2-enriched air was more than 55 °C but less than 60 °C with N2 as the sole nitrogen source, but between 60°C and 65°C when nitrate was present in the medium. The effect of temperature on nitrogenase activity, photosynthesis and respiration in the dark was determined using cells grown at 55°C. Maximal rates of all three processes were observed at 55°C and rates at 60°C during shortterm incubations were not less than 75% of the maximum. However, nitrogenase activity at 60°C was unstable and decayed at a rate of 2.2 h-1 under air and at 0.3 h-1 under argon. Photosynthesis and respiration were more stable at 60°C than anoxic nitrogen fixation. The upper temperature limits for diazotrophic growth thus seem to be set by the stability of nitrogenase.Abbreviations chl chlorophyll a - DCMU N-(3,4-dichlorophenyl) N,N-dimethylurea - Taps N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid  相似文献   

17.
Gluconacetobacter diazotrophicus was grown in chemostat under N2-fixing conditions at different culture pH values (from 2.5 to 7.5) with glucose as the C-source. Maximum glucose and oxygen utilization yields were observed at pH values between 5.0 and 6.5. Yields, although lower, were not severely affected at acidic (2.5–4.5) and moderate alkaline (7.5) pH values. But, at pH values just over 7.5, cultures became unstable and washed out. Maximum biomass yields coincided with optimal activity (and minimal synthesis) of pyrroloquinoline quinone (PQQ)-linked glucose dehydrogenase (PQQ-GDH). At external pH values of 7.0 and above, whereas PQQ-GDH was actively synthesized, a very low in situ activity could be detected. The lack of PQQ-GDH activity at moderate alkaline pH values seems to be the cause of lack of growth of this organism under these conditions.  相似文献   

18.
The utilization of some amino acids, added at 1 mM and 10 mM concentrations, as the sole combined nitrogen sources by Frankia sp. strain CpI1, has been investigated. Glutamine, like NH 4 + , provided rapid growth without N2 fixation. Histidine at 1 mM yielded poor N2-fixing activity but better cell growth than N2. Aspartate, glutamate, alanine, proline, each at 1 mM concentration, supported similar levels of N2 fixation and growth. Growth on 10 mM glutamate, proline, or histidine resulted in poor N2-fixing activity and poor cell growth. Cells grown on 10 mM alanine had about half the N2-fixing activity of cells grown on N2 but growth was good. Aspartate at 10 mM concentration, however, stimulated N2-fixing activity dramatically and promoted faster growth. Enzyme analysis suggested that asparate is catabolized by glutamate-oxaloacetate transaminase (GOT), since GOT specific activity was induced, and aspartase activity was not detected, in cells grown on aspartate as the sole combined nitrogen source. Thinlayer chromatography (TLC) of metabolites extracted from N2-grown cells fed with [14C]-aspartate showed that label was rapidly accumulated mainly on aspartate and/or glutamate, depending on the cells' physiological state, without detectable labeling on fumarate or oxaloacetate (OAA). These findings provide evidence that aspartate is catabolized by GOT to OAA which, in turn, is rapidly converted to -ketoglutarate through the TCA cycle and then to glutamate by GOT or by glutamate synthase (GOGAT). The stimulation of N2 fixation and growth by aspartate is probably caused by an increased intracellular glutamate pool.  相似文献   

19.
Many types of ecosystems have little or no N2 fixation even when nitrogen (N) is strongly limiting to primary production. Estuaries generally fit this pattern. In contrast to lakes, where blooms of N2-fixing cyanobacteria are often sufficient to alleviate N deficits relative to phosphorus (P) availability, planktonic N2 fixation is unimportant in most N-limited estuaries. Heterocystic cyanobacteria capable of N2 fixation are seldom observed in estuaries where the salinity exceeds 8–10 ppt, and blooms have never been reported in such estuaries in North America. However, we provided conditions in estuarine mesocosms (salinity over 27 ppt) that allowed heterocystic cyanobacteria to grow and fix N2 when zooplankton populations were kept low. Grazing by macrozooplankton at population densities encountered in estuaries strongly suppressed cyanobacterial populations and N2 fixation. The cyanobacteria grew more slowly than observed in fresh waters, at least in part due to the inhibitory effect of sulfate (SO4 2−), and this slow rate of growth increased their vulnerability to grazing. We conclude that interactions between physiological (bottom–up) factors that slow the growth rate of cyanobacteria and ecological (top–down) factors such as grazing are likely to be important regulators excluding planktonic N2 fixation from most Temperate Zone estuaries. Received 26 April 2002; Accepted 12 July 2002.  相似文献   

20.
The photosynthetic behaviour ofDunaliella viridis has been studied under a combination of three variables: irradiance (0–900 mol m–2 s–1), temperature (15, 23, 31, 38, 42 °C) and nitrogen concentration (0.05, 0.5, 1.5, 5, 10 mM NO 3 - ) at a salinity of 2 M NaCl.The highest rates of photosynthesis have been found at 31 °C and a nitrate concentration of 10 mM. There exists a synergistic effect between temperature and nitrogen availability on the photosynthesis ofD. viridis; under nitrogen deficiency oxygen evolution is low, even null at high temperature. The interaction between these two variables of control occurs in a multiplicative way. There is also a general increase in photosynthetic pigments following the increase in nitrogen concentration in the culture medium. The normalization of net photosynthesis data in relation to chlorophylla shows that nitrogen concentration makes an indirect control of the photosynthetic rate ofD. viridis through the variation of pigment concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号