首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The course of the CO2 evolution rates of soil samples has been followed continuously in the absence and in the presence of various organic compounds. After an incubation period of 300 hours at 13 and 20°C the CO2 evolution from pasture soil (containing 1.76% soil organic carbon) amounted to 0.13 and 0.44g CO2–C.g soil–1.h–1, respectively. For arable soil (containing 1.20% soil organic carbon) the rates amounted to 0.04 and 0.09 g CO2–C.g soil–1.h–1, respectively.At 20°C larger amounts of the organic substrates added to the soil supplied with 20 g NH4NO3–N.g soil–1 were lost as CO2 than at 13°C, indicating a higher efficiency of the growth of microorganisms at lower temperatures. In the absence of NH4NO3 the respiration rates were initially higher than in its presence, suggesting that a part of the soil microflora is inhibited by low concentrations of NH4NO3. The amounts of carbon lost were low for phenolcarboxylic acids with OH groups in the ortho position. The replacement of one of these groups by a methoxyl group resulted in a larger amount of the C lost as CO2. The replacement of the COOH group by a C=C–COOH group had a decreasing effect on the decomposition of the phenolic acids tested. The decomposition of vanillic acid,p-hydroxybenzoic acid, and of the benzoic acids with OH groups in the meta position was as complete as that of glucose, amino acids or casein. The decomposition of bacterial cells to CO2 was considerably less than that of glucose.No evidence could be obtained that the low percentage of substrate converted to CO2 at the time of maximal respiration rate was due to the decreasing diffusion rate of substrate to the microbial colonies in the soil during the consumption of substrate.  相似文献   

2.
Territrem B (TRB), a fungal metabolite isolated fromAspergillus terreus, potently and noncompetitively inhibited Electrophorus acetylcholinesterase (AChE EC 3.1.1.7), but had no inhibitory effect on horse serum butyrylcholinesterase (BtChE EC 3.1.1.8). The TRB-treated AChE did not recover its enzyme activity after either dialysis or dilution of the inhibited enzyme. The binding of [14C]TRB to AChE, but not to BtChE, was demonstrated. The concentrations of territrems required for 50% inhibition of AchE were: TRA 2.4 × 10–8 M; TRB 1.9 × 10–8 M; TRC 1.5 × 10–8 M; TRA 9.8 × 10–8 M; TRB 9.2 × 10–8 M.  相似文献   

3.
Three-year-old spruce (Picea abies) saplings were planted and cultivated for 2 years in pots with 3 1 substrate, consisting of a homogenized mixture of sand, peat and forest soil with a high organic content (volume ratio 11.52). This substrate was amended with 10–180 mol Cd [kg soil dry weight (DW)]–1, 50–7500 mol Zn (kg soil DW)–1 (determined with 1 M ammonium acetate extracts) or combinations of both elements. Annual xylem growth rings in stems of plants treated with 50 mol Cd (kg soil DW)–1 or 7500 mol Zn (kg soil DW)–1 were significantly narrower than in control plants. Growth reductions were more pronounced in the second year of the experiment. The contents of Cd and Zn in stem wood and needles were positively correlated with the substrate concentrations. The Mg contents of the spruce needles were inversely correlated with soil concentrations of Cd and Zn. Root development was impeded at moderate concentrations of Cd (50 mol kg–1) or Zn (1000 mol kg–1) in the substrate. The adverse effects of potentially toxic trace elements, like Cd or Zn, on xylem growth of spruce plants are discussed with regard to possible growth reductions in forest trees under field conditions.  相似文献   

4.
In the Mammoth Springs (Yellowstone National Park) waters with near neutral pH and soluble sulfide (H2S, HS, S2–) of over 1–2 mg/liter (30–60M) are characterized by substrate covers of phototrophic bacteria (Chloroflexus and aChlorobium-like unicell) above 50C and by a blue-green alga (Spirulina labyrinthiformis) below this temperature.Synechococcus. Mastigocladus, and other blue-green algae typical of most hot springs of western North America are excluded, apparently by sulfide. The sulfide-adaptedSpirulina photosynthesized at maximum rates at 45C and at approximately 300 to 700Ein/m2/sec of visible radiation. Sulfide (0.6–1.2 mM) severely poisoned photosynthesis of nonadapted populations, but those continuously exposed to over 30M tolerated at least 1 mM without inhibition. A normal14C-HCO3 photoincorporation rate was sustained with 0.6–1 mM sulfide in the presence of DCMU (7M) or NH2OH (0.2 mM), although both of these photosystem II inhibitors prevented photoincorporation without sulfide. Other sulfur-containing compounds (S2O3 2– SO3 2–, S2O4 2– thioglycolic acid cysteine) were unable to relieve DCMU inhibition. The lowering of the photoincorporation rate by preferentially irradiating photosystem I was also relieved by sulfide. The most tenable explanation of these results is that sulfide is used as a photo-reductant of CO2, at least when photosystem II is inhibited. It is suggested that in some blue-green algae photosystem II is poisoned by a low sulfide concentration, thus making these algae sulfidedependent if they are to continue photosynthesizing in a sulfide environment. Presumably a sulfidecytochrome reductase enzyme system must be synthesized for sulfide to be used as a photo-reductant.  相似文献   

5.
The interaction of various radioligands with spinal opioid receptors has been characterized under variable experimental conditions. Binding to , , and sites was measured in all (cervical, thoracic, lumbar) segments. The apparent affinity constant (K) of [3H]Ethylketocyclazocine (EKC) was similar in Tris, 2.09 (±1.06)×108 M–1, and phosphate buffer, 2.16 (±0.02)×108 M–1, when its interaction with and sites was blocked. Without blocking ligands, EKC binding was resolved in two components:K 1=1.01 (±0.21)×109 M–1 andK 2=0.95 (±0.61)×107 M–1. Likewise, the binding of [D-Ala2, MePhe4, Gly(ol)5]enkephalin (DAGO) or [D-Ala2, D-Leu5]-enkephalin (DADLE) alone was represented by a 2-site model. By adjusting the radioligand and receptor concentration or by the addition of blocking ligands, binding was represented by a 1-site model for DAGO,K=4.35 (±1.41)×108 M–1, and DADLE,K=2.44 (±0.08)×108 M–1.The abbreviations used are DADLE [D-Ala2, D-Leu5]enkephalin - DAGO [D-Ala2, MePhe4, Gly(ol)5]enkephalin - EKC ethylketocyclazocine - DYN dynorphin (1–17)  相似文献   

6.
The chemical compositions of ground water and organic matter in sediments were investigated at a sandy shore of Tokyo Bay, Japan to determine the fate of ground water NO3 . On the basis of Cl distribution in ground water, the beach was classified into freshwater (FR)-, transition (TR)-, and seawater (SW)-zones from the land toward the shoreline. The NO3 and N2O did not behave conservatively with respect to Cl during subsurface mixing of freshwater and seawater, suggesting NO3 consumption and N2O production in the TR-zone. Absence of beach vegetation indicated that NO3 assimilation by higher plants was not as important as NO3 sink. Low NH4 + concentrations in ground water revealed little reduction of NO3 to NH4 +. These facts implied that microbial denitrification and assimilation were the likely sinks for ground water NO3 . The potential activity and number of denitrifiers in water-saturated sediment were highest in the low-chlorinity part of the TR-zone. The location of the highest potential denitrification activity (DN-zone) overlapped with that of the highest NO3 concentration. The C/N ratio and carbon isotope ratio (13C) of organic matter in sediment (< 100 -m) varied from 12.0 to 22.5 and from –22.5 to –25.5, respectively. The 13C value was inversely related to the C/N ratio (r 2 = 0.968, n = 11), which was explained by the mixing of organic matters of terrestrial and marine origins. In the DN-zone, the fine sediments were rich in organic matters with high C/N ratios and low 13C values, implying that dissolved organic matters of terrestrial origin might have been immobilized under slightly saline conditions. A concurrent supply of NO3 and organic matter to the TR-zone by ground water discharge probably generates favorable conditions for denitrifiers. Ground water NO3 discharged to the beach is thus partially denitrified and fixed as microbial biomass before it enters the sea. Further studies are necessary to determine the relative contribution of these processes for NO3 removal.  相似文献   

7.
Two trypsin inhibitors, LA-1 and LA-2, have been isolated from ridged gourd (Luffa acutangula Linn.) seeds and purified to homogeneity by gel filtration followed by ion-exchange chromatography. The isoelectric point is atpH 4.55 for LA-1 and atpH 5.85 for LA-2. The Stokes radius of each inhibitor is 11.4 å. The fluorescence emission spectrum of each inhibitor is similar to that of the free tyrosine. The biomolecular rate constant of acrylamide quenching is 1.0×109 M–1 sec–1 for LA-1 and 0.8 × 109 M–1 sec–1 for LA-2 and that of K2HPO4 quenching is 1.6×1011 M–1 sec–1 for LA-1 and 1.2×1011M–1 sec–1 for LA-2. Analysis of the circular dichroic spectra yields 40%-helix and 60%-turn for La-1 and 45%-helix and 55%-turn for LA-2. Inhibitors LA-1 and LA-2 consist of 28 and 29 amino acid residues, respectively. They lack threonine, alanine, valine, and tryptophan. Both inhibitors strongly inhibit trypsin by forming enzymeinhibitor complexes at a molar ratio of unity. A chemical modification study suggests the involvement of arginine of LA-1 and lysine of LA-2 in their reactive sites. The inhibitors are very similar in their amino acid sequences, and show sequence homology with other squash family inhibitors.  相似文献   

8.
Summary The following equations represent the influence of the ethanol concentration (E) on the specific growth rate of the yeast cells () and on the specific production rate of ethanol () during the reactor filling phase in fed-batch fermentation of sugar-cane blackstrap molasses: = 0 - k · E and v = v 0 · K/(K +E) Nomenclature E ethanol concentration in the aqueous phase of the fermenting medium (g.L–1) - Em value of E when = 0 or = 0 (g.L–1) - F medium feeding rate (L.h–1) - k empirical constant (L.g–1.h–1) - K empirical constant (g.L–1) - Mas mass of TRS added to the, reactor (g) - Mcs mass of consumed TRS (g) - Me mass of ethanol in the aqueous phase of the fermenting medium (g) - Ms mass of TRS in the aqueous phase of the fermenting medium (g) - Mx mass of yeast cells (dry matter) in the fermenting medium (g) - r correlation coefficient - S TRS concentration in the aqueous phase of the fermenting medium (g.L–1) - Sm TRS concentration of the feeding medium (g.L–1) - t time (h) - T temperature (° C) - TRS total reducing sugars calculated as glucose - V volume of the fermenting medium (L) - V0 volume of the inoculum (L) - X yeast cells concentration (dry matter) in the fermenting medium (g.L–1) - filling-up time (h) - specific growth rate of the yeast cells (h–1) - 0 value of when E=0 - specific production rate of ethanol (h–1) - 0 value of when E=0 - density of the yeast cells (g.L–1) - dry matter content of the yeast cells  相似文献   

9.
Urease activity and its Michaelis constant for soil systems   总被引:1,自引:0,他引:1  
Summary Urea hydrolysis was measured in two separate sets of experiments. (1) Nine soil (0–15 cm) samples were treated with 200 g of urea-N g–1 dry soil and incubated (at 37°C) at 50 per cent of the water holding capacity. Samples were periodically analysed for the remaining urea-N. The urease activity (time in hoursrequired to hydrolyse half the applied urea-N) was determined to be 5.8 to 15.2 hours in the various soils, which appeared to associate principally with the organic carbon content of the soils (r=–0.80**). (2) Three soils were treated with 25 to 2000 g urea-N g–1 dry soil amounting to 0.9 to 72.0 mM urea in 11 soil: solution. The system was buffered at pH 7.2 and agitated for 5h when the remaining urea-N was determined. The values of Km and Vmax were computed by two methods (i) from the integrated form of the Michaelis-Menten equation based on the results of the first study, and (ii) from the Michaelis-Menton equation based on urea hydrolysis in the second study. The integrated method appeared to be more suitable for enzyme kinetic studies in soil systems where the Km and Vmax values bore close relationship (r=–0.88**).  相似文献   

10.
Effect of Cl on Cd uptake by Swiss chard in nutrient solutions   总被引:6,自引:1,他引:5  
Swiss chard (Beta vulgaris L., cv. Fordhook Giant) was grown in nutrient solution with Cl concentrations varying between 0.01 mM and 120 mM. Solution Na concentration and ionic strength were maintained in all treatments by compensating with NaNO3. All solutions contained Cd (50 nM, spiked with 109Cd). Three different Cd2+ buffering systems were used. In one experiment, Cd2+ activity was unbuffered; its activity decreased with increased Cl concentration as a result of the formation of CdCln 2–n species. In the other experiments, Cd2+ activity was buffered by the chelator nitrilotriacetate (NTA, 50 M) and ethylene-bis-(oxyethylenenitrilo)-tetraacetate (EGTA, 50 M) at about 10–9 M and 10–11 M, respectively. Plant growth was generally unaffected by increasing Cl concentrations in the three experiments. In unbuffered solutions, Cd concentrations in plant tissue decreased significantly (p<0.01) (approximately 2.4-fold) as solution Cl concentration increased from 0.01 mM to 120 mM. However, this decrease was smaller in magnitude than the 4.7-fold decrease in Cd2+ activity as calculated by the GEOCHEM-PC program for the same range of Cl concentrations. In solutions where Cd2+ activity was buffered by NTA, Cd concentrations in plant tissue increased approximately 1.4-fold with increasing Cl concentration in solution, while the Cd2+ activity was calculated to decrease 1.3-fold. In solutions where Cd2+ activity was buffered by EGTA, Cd concentrations in the roots increased 1.3-fold with increasing Cl concentration in solution but there was no effect of Cl on shoot Cd concentrations. The data suggest that either CdCln 2–nspecies can be taken up by plant roots or that Cl enhances uptake of Cd2+ through enhanced diffusion of the uncomplexed metal to uptake sites.Abbreviations DAS days after sowing - EGTA ethylene-bis-(oxyethylenenitrilo)-tetraacetate - HBED N,N-bis(2-hydroxybenzyl)-ethylenediamine-N,N-diacetate - NTA nitrilotriacetate  相似文献   

11.
Summary Binding of azide to type-2-copper-depleted (T2D) zucchini ascorbate oxidase, containing reduced type-3 Cu centers, and met-T2D ascorbate oxidase, containing oxidized type-3 Cu centers, has been studied spectroscopically. In both cases titration with azide in 0.1 M phosphate pH 6.8 produces a broad near-ultraviolet band with maximum at 455 nm (e 2500 M–1 cm–1, with respect to the met-T2D enzyme) and shoulder at 390 nm (e 1700 M–1 cm–1), that are assigned to(azide)Cu(II) ligand-to-metal charge transfer (LMCT) transitions. This is accompanied by a reduction of absorbance at 330 nm in the met-T2D) enzyme adduct (e –1400 M–1 cm–1). A broad circular dichroic band of negative sign between 370–480 nm corresponds to the LMCT absorption band. Analysis of the titration data indicates that one azide ion binds independently to each of the binuclear T3 Cu couples with low affinity (K = 50 M–1). The ESR signal of the T1 Cu observed in frozen solutions of the T2D enzyme is also perturbed by the addition of azide. The analogies in the azide-binding characteristics between ascorbate oxidase and laccase are discussed.  相似文献   

12.
The kinetics and characteristics of malate degradation were studied in four acid soils ranging in both pH (4.30 to 5.00) and vegetation type. The breakdown of malate was rapid in all soils with a half life of approximately 1.7 h, Km of 1.7 mM and Vmax of 70 nmol g–1 soil h–1. No relationship was observed between malate decomposition rate and pH. Co-metabolism studies with other C and N substrates (glucose, glycine, glutamate, citrate and succinate) indicated that the microorganisms were not N limited and competitive inhibition of malate breakdown was only observed in the presence of succinate. Studies with isolated mixed bacterial cultures indicated that the bacterial malate uptake was mediated by an energy dependent, dicarboxylate transporter which can be inhibited by succinate and is independent of pH between pH 5.0 and 7.0. The Km and Vmax parameters ranged from 279–955 M and 0.1–17 mol mg–1 protein h–1 for the mixed bacterial cultures depending on the bacteria's previous C source. The results indicate that in acid topsoils where microbial populations are high, the microbes may provide a considerable sink for organic acids. If organic acids are being released by roots in response to an environmental stress (e.g. Al toxicity, P deficiency) it can be expected that the efficiency of these root mediated metal resistance mechanisms will be markedly reduced by rapid microbial degradation.  相似文献   

13.
Volume-sensitive chloride and potassium currents were studied, using the whole-cell clamp technique, in cultured wild-type mouse proximal convoluted tubule (PCT) epithelial cells and compared with those measured in PCT cells from null mutant kcne1 –/– mice. In wild-type PCT cells in primary culture, a Cl conductance activated by cell swelling was identified. The initial current exhibited an outwardly rectifying current-voltage (I-V) relationship, whereas steady-state current showed decay at depolarized membrane potentials. The ion selectivity was I > Br > Cl >> gluconate. This conductance was sensitive to 1 mM 4,4-Diisothiocyanostilbene-2,2-disulfonic acid (DIDS), 0.1 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and 1 mM diphenylamine-2-carboxylate (DPC). Osmotic stress also activated K+ currents. These currents are time-independent, activated at depolarized potentials, and inhibited by 0.5 mM quinidine, 5 mM barium, and 10 µM clofilium but are insensitive to 1 mM tetraethylammonium (TEA), 10 nM charybdotoxin (CTX), and 10 µM 293B. In contrast, the null mutation of kcne1 completely impaired volume-sensitive chloride and potassium currents in PCT. The transitory transfection of kcne1 restores both Cl and K+ swelling-activated currents, confirming the implication of KCNE1 protein in the cell-volume regulation in PCT cells in primary cultures.  相似文献   

14.
Summary Adult carp were subjected to 1 mM environmental nitrite for 48 h and nitrite uptake and changes in blood respiratory properties, extracellular electrolyte composition and acid-base status were examined.A constant influx of nitrite caused an accumulation of NO 2 in plasma to 5.4 mM in 48 h. The fraction of methaemoglobin rose with plasma [NO 2 ] to 83%, and the arterial oxygen content decreased to extremely low values. Arterial increased as a compensation to this O2-shortage, whereas the O2 saturation of the functional (unoxidized) haemoglobin decreased, revealing a reduction in its O2 affinity.Blood haematocrit decreased as a result of red cell shrinkage, which caused very high red cell haemoglobin (Hb) concentrations. The erythrocytic nucleoside triphosphate (NTP) concentration showed a parallel increase whereby NTP/Hb, as well as the relative contributions of ATP and GTP to NTP, remained unchanged.Plasma [Cl] declined by 15 mM in 48 h, off-setting the plasma [NO 2 ] increase, minor changes in plasma [HCO 3 ] and a considerable increase in plasma [lactate]. Arterial pH and [HCO 3 ] rose slightly during the first 24 h of nitrite exposure, but returned to control values at 48 h. The rise in plasma [lactate] was not reflected in an extracellular metabolic acidosis. Plasma [K+] increased by 94% in 48 h, revealing an uncompensated extracellular hyperkalemia, whereas plasma [Na+] decreased, and plasma [Ca++] was unchanged. Plasma osmolality remained essentially constant.The NO 2 accumulation could be reversed by transfer of the fish to NO 2 -free water, but nitrite off-loading was slower than the preceding NO 2 loading.Abbreviations Hb hemoglobin - NTP nucleoside triphosphate - Hct hematocrit - fractional saturation of Hb with oxygen  相似文献   

15.
The apical 2 cm of seedling roots of oilseed rape (Brassica napus L., cv. Primor) produced more ethylene than adjacent, older tissue. Treatment with 5 × 10–3 mol m–3 3,5-diiodo4-hydroxybenzoic acid (DIHB), a presumed inhibitor of ethylene action, failed to stimulate root extension. Larger concentrations were inhibitory. Ethylene, applied as ethephon decreased root extension but DIHB (5 × 10–3 mol m–3) partially overcame this effect. Oxygen concentrations below that present in air also inhibited root extension but this was not ameliorated by DIHB.Roots of barley seedlings (Hordeum vulgare L., cv. Midas) evolved ethylene more slowly than roots of oilseed rape. DIHB (10–3–10–2 mol m–3) stimulated root extension in the absence of ethephon. Ethephon alone retarded root extension but DIHB partially overcame this inhibition. Small concentrations of oxygen also inhibited root extension but DIHB failed to ameliorate the effect even though the slow growth of oxygen-deficient roots (3–5% oxygen) was associated with abnormally fast rates of endogenous ethylene production.Extension growth in different oxygen concentrations was more closely associated with rates of oxygen consumption than with the amount of ethylene produced. Thus respiration rather than ethylene appeared to limit root extension under oxygen deficiency. This may explain why DIHB was unable to offset this form of environmental stress.  相似文献   

16.
Summary In conventional two microelectrode experiments, acetylcholine had qualitatively the same effect as GABA and glutamate on membrane potential and input resistance of muscle fibres of the opener and intrinsic stomach muscles of crayfish (Austropotamobius torrentium). In patch-clamp experiments, acetylcholine occasionally elicited single channel openings in cell-attached patches on these muscles. If outside-out patches were excised and the Cl concentration was high on both sides of the membrane, acetylcholine at concentrations of 1 nM regularly elicited single channel currents. The amplitude of single channel currents depended strongly on the intracellular concentration of Cl. The reversal potential of the channel, determined after replacing intracellular K+ with Cs+, corresponded to the Nernst potential for Cl. The voltage dependence and the reversal potential of single channel current amplitudes elicited by ACh, glutamate and GABA were identical. The distribution of life times of openings (>1 ms) elicited by ACh and glutamate could be fitted by a single exponential with a time constant of about 2.5 ms, corresponding to the mean open time. ACh and glutamate applied to the same outside-out patch showed cross-desensitization, and thus ACh and glutamate activate the same channels. An excitatory, cationic ACh-activated channel could not be identified. Permeabilities of the chloride channel were calculated according to the Goldman-Hodgkin-Katz equation at different membrane potentials. Negative single channel current amplitudes (inward currents) could be fitted with a permeability of 2= 3.9×10–14 cm3s–1. For positive currents (outward) the channel had a permeability of 1= 1.4× 10–14 cm3s–1. The permeability of the channel declined from 16×10–14 cm3s–1 to 2.3×10–14 cm3s–1 if the intracellular Cl-concentration was raised from 6 to 257 mM. The activation elicited by acetylcholine was inhibited by extracellular Ca++. The mean current activated by ACh was reduced by a factor of 50 if the extracellular concentration of Ca++ was raised from 0.1 mM to the physiological concentration of 13.5 mM.  相似文献   

17.
The bioleaching of minerals is a complex process that is affected by a number of biological, mineralogical, electrochemical and engineering factors. This work presents and discusses the most significant process engineering aspects involved in the bacterial leaching of copper ores, i.e. bacterial population, type of mineral and particle size, nutrients and inhibitors, oxygen and carbon dioxide, temperature and pH, leaching kinetics and operation mode.It is concluded that more work is needed in this area in order to gain a deeper insight in the many factors that govern this process. This would allow to significantly improve its overall productivity.List of Symbols C L kg/m3 dissolved oxygen concentration - C * kg/m3 equilibrium oxygen concentration - d, e, f, g % percentage of C, H, O and N in the cell - D m impeller diameter - K consistency index - K S, K1, Kc constants - k La h–1 volumetric oxygen transfer coefficient - M b mol/kg biomass apparent molecular weight - N s–1 rotation frequency - n behavior index - P kg/m3 ungassed agitation power, product concentration - P g kW/m3 gassed agitation power - p % pulp density - Q m3/h air flow rate - S kg/m3 limiting substrate concentration - W kg/(m3 · h) mass transfer rate per unit volume - X cells/cm3 biomass concentration - Y o g cells/g Fe oxygen cell yield - Y x g cells/g Fe substrate cell yield - h–1 specific growth rate - m h–1 maximum specific growth rate  相似文献   

18.
Brachionus plicatilis females were maintained for > 24 hours in water where the concentration of oxygen was precisely controlled (spherical flasks with 6 mg l–1 or < 0.5 mg l–1; food = dead Tetraselmis sp.). Each female was randomly taken from one flask and quickly placed in an observation chamber containing the same experimental conditions. The swimming path was videotaped (5 minutes); then the size of the female was measured. The tape was analyzed by automatic tracking (25 x,y coordinates of the center of the animal, in a 512 × 512 pixels space). The swimming path was analyzed for 45 females in both treatments. The speed (mm s–1 body length–1) was calculated for all trajectories, or only for those segments where females swam in a horizontal plane. This relative speed significantly decreased when the concentration of oxygen was very low. There was a negative correlation between the linear speed and the angular speed. The spatial sinuosity (S of Bovet & Benhamou, 1988) was calculated. The trajectories were significantly more sinuous when the concentration of oxygen was very low. These results could explain the accumulation of some rotifers in the oxycline; rotifers may spend more time in very low concentrations of oxygen by slowing and by turning more.  相似文献   

19.
Ultraviolet (UV) lethality was increased when puromycin aminonucleoside (PAN) (3.0 mM) was added to the postirradiation medium ofEscherichia coli strains. The extent of repair inhibition differed greatly for strains WP-2hcr +, B/r()hcr +, WP-2hcr , and Bs-1hcr . The interaction between PAN and UV was synergistic in thehcr + strains. PAN enhanced UV lethality in strain B/r () to a greater degree than in WP-2hcr +. There was no UV lethality enhancement by PAN (3.0 mM) in thehcr strains, but the interaction of PAN (8.0 mM) with UV was synergistic. PAN decreased plaque formation of T1 UV-irradiated phage plated onE. coli Bhcr + but had no effect on phage plated on Bs-1 or WP-2hcr strains. These results suggest that PAN interferes with thehcr function in UV-irradiated bacteria.  相似文献   

20.
The nitrogen cycle in lodgepole pine forests,southeastern Wyoming   总被引:7,自引:4,他引:3  
Storage and flux of nitrogen were studied in several contrasting lodgepole pine (Pinus contorta spp.latifolia) forests in southeastern Wyoming. The mineral soil contained most of the N in these ecosystems (range of 315–860 g · m–2), with aboveground detritus (37.5–48.8g · m–2) and living biomass (19.5–24.0 g · m–2) storing much smaller amounts. About 60–70% of the total N in vegetation was aboveground, and N concentrations in plant tissues were unusually low (foliage = 0.7% N), as were N input via wet precipitation (0.25 g · m–2 · yr–1), and biological fixation of atmospheric N (<0.03 g · m–2 · yr–1, except locally in some stands at low elevations where symbiotic fixation by the leguminous herbLupinus argenteus probably exceeded 0.1 g · m–2 · yr–1).Because of low concentrations in litterfall and limited opportunity for leaching, N accumulated in decaying leaves for 6–7 yr following leaf fall. This process represented an annual flux of about 0.5g · m–2 to the 01 horizon. Only 20% of this flux was provided by throughfall, with the remaining 0.4g · m–2 · yr–1 apparently added from layers below. Low mineralization and small amounts of N uptake from the 02 are likely because of minimal rooting in the forest floor (as defined herein) and negligible mineral N (< 0.05 mg · L–1) in 02 leachate. A critical transport process was solubilization of organic N, mostly fulvic acids. Most of the organic N from the forest floor was retained within the major tree rooting zone (0–40 cm), and mineralization of soil organic N provided NH4 for tree uptake. Nitrate was at trace levels in soil solutions, and a long lag in nitrification was always observed under disturbed conditions. Total root nitrogen uptake was calculated to be 1.25 gN · m–2 · yr–1 with estimated root turnover of 0.37-gN · m–2 · yr–1, and the soil horizons appeared to be nearly in balance with respect to N. The high demand for mineralized N and the precipitation of fulvic acid in the mineral soil resulted in minimal deep leaching in most stands (< 0.02 g · m–2 · yr–1). These forests provide an extreme example of nitrogen behavior in dry, infertile forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号