首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to explore fully how ligand- and temperature-induced alterations in the spin states of heme iron are related to protein readjustments, the spin label 4-isothiocyanate (I) was covalently attached at beta-93 cysteines and at NH2-terminal valines of various heme-iron ligand forms of human hemoglobin. It was found that the mobility of NH2-terminally bound spin labels depends on the magnetic moment of the heme iron. There is a an approximately linear relationship between the magnetic moment of the heme iron and the mobility of NH2-terminally bound spin labels. In accordance with our previous results, the temperature dependence of ESR spectra of spin-labeled hemoglobin suggests the temperature-induced protein conformational change in those heme-iron ligand forms that are characterized by the equilibrium of the spin states of the heme iron. The conformational change was sensed at both spin-label-binding sites: at beta-93 cysteines and at NH2-terminal valines.  相似文献   

2.
Based on the Perutz view of hemoglobin co-operativity and the methodology of statistical physics, a two-state (tr) model for the co-operative response is presented. The motion of the iron atom with respect to the heme plane is assumed to be the important feature of the binding process, and results in an expression for hemoglobin saturation as an explicit function of the internal tension of the hemoglobin molecule. Closure of the equation is achieved with the assumption of linearity between the internal tension and the displacement of the iron atom above the heme plane. The result is a linear dependence of loge [(ψ/(1?ψ)/(1/XL)] on the fractional saturation, ψ, the slope and intercept being expressed in terms of physically realizable parameters characteristic of the hemoglobin-ligand reaction. Agreement with experimental data for hemoglobin-oxygen and hemoglobin-carbon monoxide is obtained using parameter values that are reasonable in terms of the interactions they represent.  相似文献   

3.
Neuroglobin, mainly expressed in vertebrate brain and retina, is a recently identified member of the globin superfamily. Augmenting O(2) supply, neuroglobin promotes survival of neurons upon hypoxic injury, potentially limiting brain damage. In the absence of exogenous ligands, neuroglobin displays a hexacoordinated heme. O(2) and CO bind to the heme iron, displacing the endogenous HisE7 heme distal ligand. Hexacoordinated human neuroglobin displays a classical globin fold adapted to host the reversible bis-histidyl heme complex and an elongated protein matrix cavity, held to facilitate O(2) diffusion to the heme. The neuroglobin structure suggests that the classical globin fold is endowed with striking adaptability, indicating that hemoglobin and myoglobin are just two examples within a wide and functionally diversified protein homology superfamily.  相似文献   

4.
Globins are respiratory proteins that reversibly bind dioxygen and other small ligands at the iron of a heme prosthetic group. Hemoglobin and myoglobin are the most prominent members of this protein family. Unexpectedly a few years ago a new member was discovered and called neuroglobin (Ngb), being predominantly expressed in the brain. Ngb is a single polypeptide of 151 amino acids and despite the small sequence similarity with other globins, it displays the typical globin fold. Oxygen, nitric oxide, or carbon monoxide can displace the distal histidine which, in ferrous Ngb as well as in ferric Ngb, is bound to the iron, yielding a reversible adduct. Recent crystallographic data on carboxy Ngb show that binding of an exogenous ligand is associated to structural changes involving heme sliding and a topological reorganization of the internal cavities; in particular, the huge internal tunnel that connects the bulk with the active site, peculiar to Ngb, is heavily reorganized. We report the results of extended (90 ns) molecular dynamics simulations in water of ferrous deoxy and carboxy murine neuroglobin, which are both coordinated on the distal site, in the latter case by CO and in the former one by the distal His(64)(E7). The long timescale of the simulations allowed us to characterize the equilibrated protein dynamics and to compare protein structure and dynamical behavior coupled to the binding of an exogenous ligand. We have characterized the heme sliding motion, the topological reorganization of the internal cavities, the dynamics of the distal histidine, and particularly the conformational change of the CD loop, whose flexibility depends ligand binding.  相似文献   

5.
Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and β Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/β globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.  相似文献   

6.
Synechocystis sp. PCC 6803 hemoglobin is a cyanobacterial Group I truncated hemoglobin. In the absence of an exogenous ligand, its single heme group is coordinated by His46 (E10, distal) and His70 (F8, proximal). The protein can undergo a post-translational modification by which His117 (H16, in the C-terminal helix) reacts with the heme 2-vinyl group to form a Markownikoff adduct. The new C-N bond prevents heme loss, alters the dynamics of the protein, and influences ligand binding to the heme group. To explore the factors conditioning the formation of the cross-link, variants of the protein that contained an alanine or a leucine at position 46 (E10) were prepared. A double replacement (His46Leu and Tyr22 (B10) to Phe) was also performed to perturb the network of interactions stabilizing bound exogenous ligand. The single and double replacements affected the optical and NMR properties of the globin, each in a different fashion. Heme-protein cross-linking, as promoted by sodium dithionite, was retarded by the replacement of His46, but reactivity was recovered when imidazole or cyanide was used as exogenous ligand. In addition, a significant amount of a second product was systematically obtained when dithionite treatment was performed on the cyanide-bound proteins. This species was identified by NMR spectroscopy to be an adduct to the 4-vinyl group. It was concluded that the specificity and rate of the cross-linking reaction depended critically on the nature of the sixth ligand to the heme iron.  相似文献   

7.
An aspartic proteinase that binds heme with a 1:1 stoichiometry was isolated and cloned from the eggs of the cattle tick Boophilus microplus. This proteinase, herein named THAP (tick heme-binding aspartic proteinase) showed pepstatin-sensitive hydrolytic activity against several peptide and protein substrates. Although hemoglobin was a good substrate for THAP, low proteolytic activity was observed against globin devoid of the heme prosthetic group. Hydrolysis of globin by THAP increased as increasing amounts of heme were added to globin, with maximum activation at a heme-to-globin 1:1 ratio. Further additions of heme to the reaction medium inhibited proteolysis, back to a level similar to that observed against globin alone. The addition of heme did not change THAP activity toward a synthetic peptide or against ribonuclease, a non-hemeprotein substrate. The major storage protein of tick eggs, vitellin (VT), the probable physiological substrate of THAP, is a hemeprotein. Hydrolysis of VT by THAP was also inhibited by the addition of heme to the incubation media. Taken together, our results suggest that THAP uses heme bound to VT as a docking site to increase specificity and regulate VT degradation according to heme availability.  相似文献   

8.
By use of X-ray absorption near-edge structure (XANES), circular dichroism, and visible absorption spectroscopies, dromedary carbonmonoxyhemoglobin has been characterized structurally and functionally. By consideration of the experimental results the following view emerges: (i) the quaternary structure is not the unique factor determining the tertiary environment around the heme, and (ii) the multiplicity of interactions between hemoglobin and solvent components induces a large number of globin conformations, which somehow affect the conformation of the heme such that the structural parameters (i.e., the doming of porphyrins, the movements of the iron relative to the heme plane, the distortion of the ligand field, and the change in the Fe-C-O angle) can be uncoupled.  相似文献   

9.
Visible and near infrared magnetic circular dichroism (MCD) spectra of heme proteins and enzymes as well as those of a protein-free heme bound to 2-methylimidazole were recorded and compared at 4.2 K in unrelaxed metastable and relaxed equilibrium heme stereochemistry. The relaxed and unrelaxed stereochemistries of a 5-coordinate ferrous heme were generated by chemical reduction of iron at room temperature before freezing the sample and by photolysis of CO or O2 complexes at 4.2 K, respectively. The results are discussed in terms of a protein contribution into energies of the Fe-N epsilon(His) and Fe-N(pyrrols) bonds and their change on a ligand binding. We observed and analyzed cases of weak (myoglobin, hemoglobin) and strong (leghemoglobin, peroxidases) constraints imposed by the protein conformation on the proximal heme stereochemistry by comparing the bond energies in proteins with those in the protoheme-(2-methylimidazole) model compound. The role of a protein moiety in modulating the ligand binding properties of leghemoglobin and the heme reactivity of horseradish peroxidase is discussed.  相似文献   

10.
The effects of changes in the groups attached to the periphery of the porphyrin ring of the heme of various hemoglobin and myoglobins on the environment experienced by the ligand, carbon monoxide, have been studied by observation of the chemical shift of the bound 13CO. The results indicate that the major interaction between bound ligands and substituents around the porphyrin is that transmitted electronically from substituent to ligand. The nature of the protein environment around the ligand and the interaction between the proximal histidine (F8) and the ligand (through the iron atom) impose differences between subunits of hemoglobin and between myoglobins and hemoglobins which are largely, but not entirely, independent of these substituent effects. To assess the influence of protein structure on the chemical shifts of bound ligand, the shifts of 13CO bound to myoglobin and hemoglobins from a wide range of species have also been measured.  相似文献   

11.
X-ray difference Fourier analysis at 2.8 Å resolution shows that the tertiary structures of horse cyanide methemoglobin and methemoglobin differ significantly. The conformations of the heme groups and their interactions with the globin are altered. Short contacts with globin side chains affect cyanide binding to the hemes, and the changes in globin-ligand contact upon substitution of cyanide for water in turn directly affect globin structure. Although the ligand peaks lie off the heme axes, the atoms FeCN may still lie on a straight line (as they do in small iron cyanide complexes), with this line not normal to the mean heme plane. This linear binding configuration is consistent with the observed motion and deformation of the porphyrin. Although motion of the iron atoms is not directly apparent, there is evidence that some changes in tertiary structure are induced by shortening of the iron-pyrrol nitrogen bond lengths. This and other studies suggest that the structural changes responsible for co-operativity in hemoglobin may be initiated not merely by an alteration in the covalent porphyrin-proximal histidine linkage, but by changes in the noncovalent interactions of the globin with the ligand and porphyrin as well.  相似文献   

12.
Cytoglobin is a recently discovered hemeprotein belonging to the globin superfamily together with hemoglobin, myoglobin and neuroglobin. Although distributed in almost all human tissues, cytoglobin has not been ascribed a specific function. Human cytoglobin is composed of 190 amino acid residues. Sequence alignments show that a protein core region (about 150 residues) is structurally related to hemoglobin and myoglobin, being complemented by about 20 extra residues both on the N and C termini. In the absence of exogenous ligands (e.g. O2), the cytoglobin distal HisE7 residue is coordinated to the heme Fe atom, thus decreasing the ligand affinity. The crystal structure of human cytoglobin (2.1 A resolution, 21.3% R-factor) highlights a three-over-three alpha-helical globin fold, covering residues 18-171; the 1-17 N-terminal, and the 172-190 C-terminal residue segments are disordered in both molecules of the crystal asymmetric unit. Heme hexa-coordination is evident in one of the two cytoglobin chains, whereas alternate conformation for the heme distal region, achieving partial heme penta-coordination, is observed in the other. Human cytoglobin displays a large apolar protein matrix cavity, next to the heme, not related to the myoglobin cavities recognized as temporary ligand docking stations. The cavity, which may provide a heme ligand diffusion pathway, is connected to the external space through a narrow tunnel nestled between the globin G and H helices.  相似文献   

13.
Cytochrome P-450cam in the native, substrate-free state (Fe3+, S = 1/2) substantially reduces the NMR relaxation times, T1 and T2, of water protons. Temperature and frequency dependences of T1 and T2 were measured; they are consistent with a model of one or two protons exchanging between a binding site on a heme ligand and bulk water. The relevant parameters of this model have been deduced from the data. The spin relaxation time of the heme iron, tau S similar to 0.5 ns at 25 degrees C, is unusually long for a low spin ferric heme protein but is compatible with the line widths measured for paramagnetically shifted heme resonances. The proton residence time on the ligand, tau M similar to 1 microsecond at 25 degrees C, follows an Arrhenius law with activation energy EM similar to 15 kcal/mol. A scalar hyperfine interaction A/h = 2.2 MHz (3.1 MHz for one-proton exchange) of the found proton(s) with the heme iron is deduced from the difference between T1 and T2 observed in the fast exchange limit. The iron-proton distance is found to be 2.9 A (2.6 A for one-proton exchange). Variation of pH between pH 6.4 and 8.6 does not affect T1. The bearing of these results on the question of the axial heme ligand is discussed.  相似文献   

14.
Abstract

Visible and near infrared magnetic circular dichroism (MCD) spectra of heme proteins and enzymes as well as those of a protein-free heme bound to 2-methylimidazole were recorded and compared at 4.2 K in unrelaxed metastable and relaxed equilibrium heme stereochemistry. The relaxed and unrelaxed stereochemistries of a 5-coordinate ferrous heme were generated by chemical reduction of iron at room temperature before freezing the sample and by photolysis of CO or O2 complexes at 4.2 K, respectively. The results are discussed in terms of a protein contribution into energies of the Fe-Nepslion(His) and Fe-N(pyrrols) bonds and their change on a ligand binding. We observed and analyzed cases of weak (myoglobin, hemoglobin) and strong (leghemoglobin, peroxidases) constraints imposed by the protein conformation on the proximal heme stereochemistry by comparing the bond energies in proteins with those inthe protoheme-(2-methylimidazole) model compound. The role of a protein moiety in modulating the ligand binding properties of leghemoglobin and the heme reactivity of horseradish peroxidase is discussed.  相似文献   

15.
Neuroglobin, a recently discovered globin predominantly expressed in neuronal tissue of vertebrates, binds small, gaseous ligands at the sixth coordination position of the heme iron. In the absence of an exogenous ligand, the distal histidine (His64) binds to the heme iron in the ferrous and ferric states. The crystal structure of murine ferric (met) neuroglobin at 1.5 A reveals interesting features relevant to the ligand binding mechanism. Only weak selectivity is observed for the two possible heme orientations, the occupancy ratio being 70:30. Two small internal cavities are present on the heme distal side, which enable the His64(E7) side chain to move out of the way upon exogenous ligand binding. Moreover, a third, huge cavity (volume approximately 290 A3) connecting both sides of the heme, is open towards the exterior and provides a potential passageway for ligands. The CD and EF corners exhibit substantial flexibility, which may assist ligands in entering the protein and accessing the active site. Based on this high-resolution structure, further structure-function studies can be planned to elucidate the role of neuroglobin in physiological responses to hypoxia.  相似文献   

16.
Halder P  Trent JT  Hargrove MS 《Proteins》2007,66(1):172-182
Present in most organisms, hexacoordinate hemoglobins (hxHbs) are proteins that have evolved the capacity for reversible bis-histidyl heme coordination. The heme prosthetic group enables diverse protein functionality, such as electron transfer, redox reactions, ligand transport, and enzymatic catalysis. The reactivity of heme is greatly effected by the coordination and noncovalent chemical environment imposed by its connate protein. Of considerable interest is how the hxHb globin fold achieves reversible intramolecular coordination while still enabling high-affinity binding of oxygen, nitric oxide, and other small ligands. Here we explore this question by examining the role of the protein matrix on coordination behavior in a group of hxHbs from animals, plants, and bacteria, including human neuroglobin and cytoglobin, a nonsymbiotic hemoglobin from rice, and a truncated hemoglobin from the cyanobacterium Synechocystis. This is done with a set of experiments measuring the reduction potentials of each wild-type hxHb and its corresponding mutant protein where the reversibly bound histidine (the distal His) has been replaced with a noncoordinating side chain. These reduction potentials, coupled with studies of the mutant proteins saturated with exogenous imidazole, enable us to assess the effects of the protein matrices on histidine coordination. Our results show significant variation among the hxHbs, demonstrating flexibility in the globin moiety's ability to regulate reversible coordination. This regulation is particularly evident in the plant nonsymbiotic hemoglobins, where ferric state histidine coordination affinity is substantially lowered by the protein matrix.  相似文献   

17.
The survival of Mycobacterium tuberculosis requires detoxification of host *NO. Oxygenated Mycobacterium tuberculosis truncated hemoglobin N catalyzes the rapid oxidation of nitric oxide to innocuous nitrate with a second-order rate constant (k'(NOD) approximately 745 x 10(6) m(-1) x s(-1)), which is approximately 15-fold faster than the reaction of horse heart myoglobin. We ask what aspects of structure and/or dynamics give rise to this enhanced reactivity. A first step is to expose what controls ligand/substrate binding to the heme. We present evidence that the main barrier to ligand binding to deoxy-truncated hemoglobin N (deoxy-trHbN) is the displacement of a distal cavity water molecule, which is mainly stabilized by residue Tyr(B10) but not coordinated to the heme iron. As observed in the Tyr(B10)/Gln(E11) apolar mutants, once this kinetic barrier is lowered, CO and O(2) binding is very rapid with rates approaching 1-2 x 10(9) m(-1) x s(-1). These large values almost certainly represent the upper limit for ligand binding to a heme protein and also indicate that the iron atom in trHbN is highly reactive. Kinetic measurements on the photoproduct of the *NO derivative of met-trHbN, where both the *NO and water can be directly followed, revealed that water rebinding is quite fast (approximately 1.49 x 10(8) s(-1)) and is responsible for the low geminate yield in trHbN. Molecular dynamics simulations, performed with trHbN and its distal mutants, indicated that in the absence of a distal water molecule, ligand access to the heme iron is not hindered. They also showed that a water molecule is stabilized next to the heme iron through hydrogen-bonding with Tyr(B10) and Gln(E11).  相似文献   

18.
Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used 1H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64–iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine–iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine–iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.  相似文献   

19.
A native globin from the dimeric hemoglobin, hemoglobin I, of the mollusc Scapharca inaequivalvis has been obtained with the acid-acetone method. The globin has a lower sedimentation coefficient than the native protein at neutral pH; its reconstitution product with natural heme has the same physicochemical and functional properties as the native protein. proto- and meso-cobalt hemoglobin I have been prepared and characterized. proto-Cobalt hemoglobin I binds oxygen reversibly with a lower affinity and a lower cooperativity than native hemoglobin I; thus, the changes in the functional properties brought about by substitution of iron with cobalt are similar to those observed in human hemoglobin A. The EPR spectra of deoxy-proto-cobalt hemoglobin I and of the photolysis product of oxy-meso-cobalt hemoglobin I indicate that two histidine residues are the apical heme ligands. The broad signal at g = 2.38 in deoxy-proto-cobalt hemoglobin I points to a constrained structure of the heme site in this derivative which results from a distorted coordination of the hindered proximal histidine. A similar structure has been proposed previously for the alpha chains in deoxy-cobalt hemoglobin A.  相似文献   

20.
Pendrak ML  Krutzsch HC  Roberts DD 《Biochemistry》2000,39(51):16110-16118
Hemoglobin (Hb) is a host factor that induces expression of a promiscuous receptor on Candida albicans for fibronectin (FN) and several other extracellular matrix proteins. FN receptor expression was induced by ferric (Hb(+)Met and Hb(+)CN), ferrous (HbCO and HbO(2)), and cobalt-protoporphyrin derivatives of Hb, whereas globin was inactive. The Hb derivatives all exhibited saturable, dose-dependent kinetics of FN receptor induction, suggesting that Hb may be acting as a receptor ligand. Soluble Hb bound saturably to a low-affinity binding site [K(d) = (1.1+/-0.2) x 10(-6) M] on C. albicans blastospores. However, uptake of (55)FeHb revealed that heme or iron transport into the cell is not required for induction, since internalization of (55)Fe from Hb did not occur until after induction of FN binding. The serum Hb-binding protein, haptoglobin, specifically abrogated this response, indicating that protein structure rather than the heme ligand or iron is necessary for induction of this signaling pathway. C. albicans also adhered to immobilized Hb, which was sufficient to induce FN receptor expression, and to Hb polymers that formed in defined Hb liquid media in the presence of cells. Formation of Hb polymers in solution required metabolic energy, since the aggregation process was halted with azide addition. Collectively, these data demonstrate that C. albicans recognizes polymerized Hb through multivalent low-affinity interactions, and this may be a host environmental cue that triggers extracellular matrix receptor expression at a septic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号