首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few investigations have empirically analyzed fish gut function in the context of chemical reactor models. In this study, digestive enzyme activities, levels of gastrointestinal fermentation products [short chain fatty acids (SCFA)], luminal nutrient concentrations, and the mass of gut contents were measured along the digestive tract in herbivorous and carnivorous minnows to ascertain whether their guts function as “plug-flow reactors” (PFRs). Four of the species, Campostoma anomalum, C. ornatum, C. oligolepis, and C. pauciradii, are members of a monophyletic herbivorous clade, whereas the fifth species, Nocomis micropogon, is a carnivore from an adjacent carnivorous clade. In the context of a PFR model, the activities of amylase, trypsin and lipase, and the concentrations of glucose, protein, and lipid were predicted to decrease moving from the proximal to the distal intestine. I found support for this as these enzyme activities and nutrient concentrations generally decreased moving distally along the intestine of the four Campostoma species. Furthermore, gut content mass and the low SCFA concentrations did not change (increase or decrease) along the gut of any species. Combined with a previous investigation suggesting that species of Campostoma have rapid gut throughput rates, the data presented here generally support Campostoma as having guts that function as PFRs. The carnivorous N. micropogon showed some differences in the measured parameters, which were interpreted in the contexts of intake and retention time to suggest that PFR function breaks down in this carnivorous species.  相似文献   

2.
Animal Guts as Ideal Chemical Reactors: Maximizing Absorption Rates   总被引:1,自引:0,他引:1  
I solved equations that describe coupled hydrolysis in and absorption from a continuously stirred tank reactor (CSTR), a plug flow reactor (PFR), and a batch reactor (BR) for the rate of ingestion and/or the throughput time that maximizes the rate of absorption (=gross rate of gain from digestion). Predictions are that foods requiring a single hydrolytic step (e.g., disaccharides) yield ingestion rates that vary inversely with the concentration of food substrate ingested, whereas foods that require multiple hydrolytic and absorptive reactions proceeding in parallel (e.g., proteins) yield maximal ingestion rates at intermediate substrate concentrations. Counterintuitively, then, animals acting to maximize their absorption rates should show compensatory ingestion (more rapid feeding on food of lower concentration), except for the lower range of diet quality for complex diets and except for animals that show purely linear (passive) uptake. At their respective maxima in absorption rates, the PFR and BR yield only modestly higher rates of gain than the CSTR but do so at substantially lower rates of ingestion. All three ideal reactors show milder than linear reduction in rate of absorption when throughput or holding time in the gut is increased (e.g., by scarcity or predation hazard); higher efficiency of hydrolysis and extraction offset lower intake. Hence adding feeding costs and hazards of predation is likely to slow ingestion rates and raise absorption efficiencies substantially over the cost-free optima found here.  相似文献   

3.
Horizontal rotating reactors offer many advantages for enzymatic hydrolysis of viscous biomass slurries; however, they do not provide homogenous mixtures since motion is only in the angular direction. Multi-directional mixing is important for dispersing enzymes and carrying products away from reaction sites. The objective here was to experimentally quantify mixing times and axial dispersion coefficients in a horizontal rotating bioreactor. Mixing times were of the same order as reaction times, indicating that enzymatic hydrolysis could be as much controlled by diffusion and mixing effects as by the complex reaction mechanism. The dispersion coefficient for the highest solids slurry was 20× less than the lowest solids slurry, which is indicative of the difference in free water and the magnitude change of viscosity with relatively small addition of solids. The slow mixing times and low dispersion may be an acceptable tradeoff with significantly lower power requirements compared to a conventional vertical reactor.  相似文献   

4.
Granule development in a split-feed anaerobic baffled reactor   总被引:9,自引:0,他引:9  
Operating anaerobic reactors at high organic loading rates during start-up can lead to instability, accumulation of volatile fatty acids and low pH, such problems being exacerbated in reactors that exhibit plug-flow characteristics. Moreover, plug-flow conditions increase the exposure of biomass to any toxic components in the feed. To overcome these limitations, an anaerobic baffled reactor (ABR), a reactor exhibiting partial plug-flow characteristics, was modified by splitting the feed between the individual compartments to produce the split-feed ABR (SFABR). Consequently, more favourable conditions were created in the initial compartments, such as lower, longer hydraulic retention time and longer cell retention time; conditions in the final compartments were also improved by the increased food availability for microorganisms. Other benefits included better gas mixing characteristics as a result of the more balanced gas production across the reactor. Granule development was compared in SFABR and normally fed ABR by analysing sludge samples, taken during start-up and continuous operation, using scanning electron microscopy. Photomicrographs allowed tentative conclusions to be made concerning the effect of split-feeding on the distribution of bacterial populations within the granule architecture and the role of extracellular polymers on granule formation.  相似文献   

5.
Summary We analyze gut architectures of 42 species of marine polychaetes in terms of their anatomically distinct compartments, and quantify differences among guts in terms of ratios of body volume to gut volume, relative compartmental volumes, total gut aspect ratios and compartmental aspect ratios. We use multivariate techniques to classify these polychaetes into 4 groups: carnivores with tubular guts; deposit feeders with tubular guts; deposit feeders with 3 gut compartments; and deposit feeders with 4 or 5 gut compartments. Tubular guts, morphological expressions of plug flow, are common among deposit feeders and may allow relatively rapid ingestion rates and short throughput times. Median gut volume per unit of body volume in deposit feeders (31%) is twice that of carnivores (15%) and ranges up to 83% in one deep-sea species. Deep-sea deposit feeders tend to have relatively larger and longer guts than closely-related nearshore and shelf species. Guts of a number of deep-sea deposit feeders and nearshore and shelf deposit feeders from muddy environments are relatively longer and narrower as body size increases, suggesting that digestive diffusion limitations may be important. Gut volume scales as (body volume)1 while ingestion rate scales as (body volume)0.7. If diet and the chemical kinetics of digestion do not change appreciably, throughput time and thus the extent of digestion of given dietary components therefore must increase as a deposit feeder grows. Digestive processing constrainst may be most important in juveniles of species (especially those species with plug-flow guts) that are deposit feeders as adults.  相似文献   

6.
Chemical reactor theory under the premise of maximization of net rate of nutrient absorption has been used to predict throughput time, tau, of digesta in animals. Animals that feed on hexoses, such as many vertebrate fruit and nectar eaters, are of central interest in testing reactor theory because they use no hydrolysis before absorption and, hence, should provide valuable, simplified test cases. Graphical methods based on batch reactors and used to make such predictions in the past can give optimal gut throughput times (tauopt) identical with predictions from continuous plug-flow reactor models derived here: in animals with passive, linear uptake alone, tauopt should decline as hexose concentration of food increases. If saturating active uptake is involved, however, a minimum in tauopt (maximum in ingestion rate) is predicted at intermediate hexose concentration, the exact location of this minimum depending on costs of ingestion as well as on uptake kinetics. That is, tauopt first falls to a minimum with increasing hexose concentration and then increases. Optimal throughput time rises as uptake sites become saturated because there is little gross gain and no net gain from increased ingestion rate when uptake already is nearly saturated. It also rises with increasing costs of ingestion. The continuous-time analytic solutions provided here further make the novel and very general prediction of high sensitivity to decreasing tau below tauopt.  相似文献   

7.
Most conventional digesters used for animal wastewater treatment include continuously stirred-tank reactors. While imperfect mixing patterns are more common than ideal ones in real reactors, anaerobic digestion models often assume complete mixing conditions. Therefore, their applicability appears to be limited. In this study, a mathematical model for anaerobic digestion of cattle manure was developed to describe the dynamic behavior of non-ideal mixing continuous flow reactors. The microbial kinetic model includes an enzymatic hydrolysis step and four microbial growth steps, together with the effects of substrate inhibition, pH and thermodynamic considerations. The biokinetic expressions were linked to a simple two-region liquid mixing model, which considered the reactor volume in two separate sections, the flow-through and the retention regions. Deviations from an ideal completely mixed regime were represented by changing the relative volume of the flow-through region (a) and the ratio of the internal exchange flow rate to the feed flow rate (b). The effects of the hydraulic retention time, the composition of feed, the initial conditions of the reactor and the degree of mixing on process performance can be evaluated by the dynamic model. The simulation results under different conditions showed that deviations from the ideal mixing regime decreased the methane yield and resulted in a reduced performance of the anaerobic reactors. The evaluation of the impact of the characteristic mixing parameters (a) and (b) on the anaerobic digestion of cattle manure showed that both liquid mixing parameters had significant effects on reactor performance.  相似文献   

8.
The hindgut of soil-feeding termites is highly compartmentalized and characterized by pronounced axial dynamics of the intestinal pH and microbial processes such as hydrogen production, methanogenesis, and reductive acetogenesis. Nothing is known about the bacterial diversity and the abundance or axial distribution of the major phylogenetic groups in the different gut compartments. In this study, we showed that the variety of physicochemical conditions is reflected in the diversity of the microbial communities in the different gut compartments of two Cubitermes species (TERMITIDAE: Termitinae). 16S rRNA gene clones from the highly alkaline first proctodeal segment (P1) of Cubitermes orthognathus represented almost exclusively gram-positive bacteria with low G+C content (LGC bacteria). In the posterior gut segments, their proportion decreased progressively, and the clone libraries comprised a variety of phyla, including the Cytophaga-Flexibacter-Bacteroides group, various subgroups of Proteobacteria, and the spirochetes. Phylogenetic analysis revealed that many of the clones clustered with sequences from the guts of other termites, and some even formed clusters containing only clones from C. orthognathus. The abundance and axial distribution of major phylogenetic groups in the gut of Cubitermes ugandensis were determined by fluorescence in situ hybridization with group-specific oligonucleotide probes. While the results were generally in good agreement with those of the clonal analysis, direct counts with probes specific for the Planctomycetales revealed a severe underestimation of representatives of this phylum in the clone libraries. Results obtained with newly designed FISH probes directed against two clusters of LGC clones from C. orthognathus indicated that the clones were restricted to specific gut regions. A molecular fingerprinting analysis published in a companion paper (D. Schmitt-Wagner, M. W. Friedrich, B. Wagner, and A. Brune, Appl. Environ. Microbiol. 69:6018-6024, 2003) corroborated the presence of compartment-specific bacterial communities in the gut of different Cubitermes species.  相似文献   

9.
Lipase from Pseudomonas fluorescens biotype I was immobilized by adsorption of anion exchange resin using glutaraldehyde to enhance the adsorption. The activity yield of the immobilized lipase was very low (below 1%) when lipase activity was measured using emulsion substrate. The activity yield was 10-70% when lipase activity was measured using non-emulsion substrate. Countercurrent reactors for hydrolysis of oil using non-emulsion substrate were studied. A fluidized bed reactor was found to be superior to a fixed bed one since in a fixed bed reactor the separation rate of the two layers was slow and the flow rate of the reactor had to be slower than the separation rate. A fluidized bed reactor system equipped with settling compartments and stirring compartments was devised. Continuous lipolysis at 60 degrees C and continuous separation of oily product and water soluble product were performed. After continuous operation for more than 3 months, 70% of the initial activity of the immobilized lipase was observed at the end of the reaction.  相似文献   

10.
Analytical expressions are derived for the optimal design (based on minimum overall reactors volume) of a series of N CSTR's performing enzymatic lactose hydrolysis. It is assumed that lactose hydrolysis obeys Michaelis-Menten kinetics with competitive product (galactose) inhibition and no enzyme deactivation occurs. The optimum design of a cascade of ideally mixed reactors are compared with equal size reactors and with plug flow reactor required for a given overall degree of lactose conversion. The effect of operating parameters such as temperature, lactose initial (feed) concentration and conversion, enzyme and product initial concentration on the optimal overall holding time are also investigated. Optimization results for a series of N CSTR's up to five are obtained and compared with plug flow reactor.  相似文献   

11.
In Part I of this series,(1) we derived a model and made simulations for a multistage fluidized bed reactor (MFBR). It was concluded that the MFBR can be an attractive alternative for a fixed bed reactor when operated with a deactivating biocatalyst. In Part II of this series, the design of a laboratory-scale MFBR and its evaluation to investigate the practical feasibility of this reactor type, will be described. Experiments with a duration as long as 10 days were carried out successfully using immobilized glucose isomerase as a model reaction system. The results predicted by the model are in good agreement with the measured glucose concentration and biocatalyst activity gradients, indicating perfect mixing of the particles in the reactor compartments.The diameters of the biocatalyst particles used in the experiments showed a large spread, with the largest being 1.7 times the smallest. Therefore, an additional check was carried out, to make sure that the particles were not segregating according to size. Particles withdrawn from the reactor compartments were investigated using an image analyzer. Histograms of particle size distribution do not indicate segregation and it is concluded that the particles used have been mixed completely within the compartments. As a result, transport of biocatalyst is nearly plug flow.  相似文献   

12.
The evaluation of mixing quality is an important factor for improving the geometry of stirred-tank reactors and impellers used in bioprocess engineering applications, such as the enzymatic hydrolysis of plant materials. Homogeneity depends on different factors, including the stirrer type and the reactor type (e.g., ratio of diameter/height, ratio of impeller tip diameter/reactor diameter) with or without baffles. This study compares two impellers for enzymatic hydrolysis of suspensions of biomass particles on a milliliter scale. Both impellers were derived from industrially relevant geometries, such as blade and grid stirrers, although the geometry of the second stirrer was slightly modified to an asymmetric shape. The stirrers were investigated with different stirrer–reactor configurations. This was done experimentally and with the aid of computational fluid dynamics. The flow field, mixing numbers, power characteristics and initial conversion rates of sugars were considered to compare the two stirrers. The simulated mixing numbers and power characteristics in baffled and unbaffled milliliter-scale reactors were found to be in good agreement with the measured mixing times and power consumption. The mixing numbers required to reach homogeneity were much higher for the symmetric impeller and remained at least twice as high as the mixing numbers required when using the asymmetric impeller. The highest initial sugar releases from milled corn stover suspensions were achieved with the asymmetric impeller shape. Regardless of the differences in the flow fields or mixing times, diverging enzymatic sugar releases could be confirmed for Newtonian media only.  相似文献   

13.
Invertase immobilized onto corn grits was utilized in the hydrolysis of highly concentrated sucrose solutions producting liquid sugar solutions containing glucose and fructose. Comparisons of conversion efficiencies of this immobilized invertase in a continuous stirredtank reactor and a plug-flow reactor indicated that the plug-flow reactor has an higher efficiency. Continuous sucrose hydrolysis was then performed in 0.1- and 1-L tubular reactors. This tenforld scaling-up was achieved without any noticeable loss in efficiency. This process thus was scaled-up to a 17.6-L pilot reactor set in a cane sugar refinery. This reactor was fed with highly concentrated sucrose solutions [71% (w/w)] to produce invert sugar syrup with the desired inversion degree. It allows a productivity equal to 9.1 kg sucrose hydrolyzed/h in the case of a 69% (w/w) sucrose initial concentration with a 72% conversion rate.  相似文献   

14.
European hedgehogs (Erinaceus europaeus) have recently been identified as a conservation threat in New Zealand. Hedgehogs were kill-trapped at 14 wetland and braided riverbed sites in the upper Waitaki Basin between late October 1997 and early February 1998 and their gut contents described. The most commonly eaten prey were Coleoptera (present in 81% of 192 guts), Lepidoptera (52%; n = 192), Dermaptera (49%; n = 192), Hymenoptera (42%; n = 192) and Orthoptera (31%; n = 319). Large numbers of single invertebrate prey types were frequently eaten by individual animals, likely indicating hedgehogs’ ability to take advantage of rich patches of food. Weta remains occurred in 22% of guts, with the gut of one adult male containing 283 Hemiandrus legs. No remains of the endangered robust grasshopper were found. Eggshell was recorded in 4% of 615 guts. Native lizard remains were found in 6% of 615 guts and three times as many adult female hedgehog guts contained lizards compared with adult males. This difference may be linked to females’ high energetic demands during the breeding season. The dependence of hedgehogs on invertebrate prey is likely to have significant implications for the conservation of threatened endemic invertebrates, which often show restricted ranges. While birds’ eggs and native lizards appear to be of lesser importance, small, localised populations of these fauna may still be threatened by hedgehog predation.  相似文献   

15.
The hindgut of soil-feeding termites is highly compartmentalized and characterized by pronounced axial dynamics of the intestinal pH and microbial processes such as hydrogen production, methanogenesis, and reductive acetogenesis. Nothing is known about the bacterial diversity and the abundance or axial distribution of the major phylogenetic groups in the different gut compartments. In this study, we showed that the variety of physicochemical conditions is reflected in the diversity of the microbial communities in the different gut compartments of two Cubitermes species (Termitidae: Termitinae). 16S rRNA gene clones from the highly alkaline first proctodeal segment (P1) of Cubitermes orthognathus represented almost exclusively gram-positive bacteria with low G+C content (LGC bacteria). In the posterior gut segments, their proportion decreased progressively, and the clone libraries comprised a variety of phyla, including the Cytophaga-Flexibacter-Bacteroides group, various subgroups of Proteobacteria, and the spirochetes. Phylogenetic analysis revealed that many of the clones clustered with sequences from the guts of other termites, and some even formed clusters containing only clones from C. orthognathus. The abundance and axial distribution of major phylogenetic groups in the gut of Cubitermes ugandensis were determined by fluorescence in situ hybridization with group-specific oligonucleotide probes. While the results were generally in good agreement with those of the clonal analysis, direct counts with probes specific for the Planctomycetales revealed a severe underestimation of representatives of this phylum in the clone libraries. Results obtained with newly designed FISH probes directed against two clusters of LGC clones from C. orthognathus indicated that the clones were restricted to specific gut regions. A molecular fingerprinting analysis published in a companion paper (D. Schmitt-Wagner, M. W. Friedrich, B. Wagner, and A. Brune, Appl. Environ. Microbiol. 69:6018-6024, 2003) corroborated the presence of compartment-specific bacterial communities in the gut of different Cubitermes species.  相似文献   

16.
17.
Intestinal Ca and P absorption was investigated on rachitic chicks raised on diets with a 1% Ca and 0.3% or 1% P contents. 45Ca and 32P absorption was determined by the technique of the isolated gut sac in vivo. In addition, 32P transport was also measured by the everted gut sac procedure in vitro. Treatment with vit. D3 during 7 days increased the 45Ca absorption in animals fed diets containing 0.3% or 1% P. 32P absorption showed an increase after 2 days of treatment and a decrease afterwards. The reduction of 32P absorption was larger in animals fed diet with 1% P. Study of 32P transport with the everted gut sac technique showed an increase after vit. D3 and a loss of intracellular P, regardless the duration of treatment.  相似文献   

18.
Production of oxalic acid from sugar beet molasses was developed in a series of three reactors. Nitrogen oxides formed were used to manufacture oxalic acid in the second and third reactor. Parameters affecting the reaction were determined to be, air flow rate, temperature, the amount of V2O5 catalyst and the concentrations of molasses and H2SO4. The maximum yields in the second and third reactors were 78.9% and 74.6% of theoretical yield, respectively. Also, kinetic experiments were performed and the first-order rate constants were determined for the glucose consumption rate. Nitrogen oxides in off-gases from the final reactor were absorbed in water and concentrated sulphuric acid and reused in the following reactors giving slightly lower yields under similar conditions. In this novel way, it was possible to recover NO(x) and to prevent air pollution. Meanwhile, it was possible to reduce the unit cost of reactant for oxalic acid production. A maximum 77.5% and 74.1% of theoretical yield was obtained by using the absorption solutions with NO(x).  相似文献   

19.
Saccharomyces cerevisiae was cultivated in a 4-m(3) pilot plant airlift tower loop reactor with a draft tube in batch and continuous operations and for comparison in a laboratory airlift tower loop reactor of 0.08 m(3) volume. The reactors were characterized during and after the cultivation by measuring the distributions of the residence times of the gas phase with pseudostochastic tracer signals and mass spectrometer and by evaluating the mixing in the liquid phase with a pulse-shaped volatile tracer signal and mass spectrometer as a detector. The mean residence times and the intensities of the axial mixing in the riser and downcomer, the circulation times of the gas phase, and the fraction of the recirculated gas phase were evaluated and compared.  相似文献   

20.
We examined the physical properties of digesta from the proximal (sacciform) and distal (tubiform) regions of the forestomach of tammar and parma wallabies maintained on a ryegrass sward. The digesta exhibited high viscosity, which, in conjunction with low flow rates calculated from published retention times of particulate marker in the stomach, results in a low potential for macrofluid mixing during onflow of food by displacement. The pseudoplastic nature of the viscosity profile and very low "flow behavior index" also indicate that macrofluid mixing around haustrae would be very localized. These findings indicate that the uniform mixing of whole digesta required for continuously stirred tank reactors (CSTRs) is unlikely. Voidage, the proportion of digesta not occupied by solid material, and "consistency index" were greater in the digesta from the proximal than in the distal regions of the forestomach. We conclude that the mixing conditions in wallaby stomachs are better described as a partially emptying batch reactor (PEBR) than a CSTR series and that lower permeabilities in conjunction with higher viscosities decrease axial mixing and thus increase efficiency in PEBRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号