首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Several lines of evidence suggest that sucrose is transported by the lactose carrier of Escherichia coli. Entry of sucrose was monitored by an osmotic method which involves exposure of cells to a hyperosmotic solution of disaccharide (250 mM). Such cells shrink (optical density rises), and if the solute enters the cell, there is a return toward initial values (optical density falls). By this technique sucrose was found to enter cells at a rate approximately one third that of lactose. In addition, the entry of [14C]sucrose was followed by direct analysis of cell contents after separation of cells from the medium by centrifugation. Sucrose accumulated within the cell to a concentration 160% of that in the external medium. The addition of sucrose to an anaerobic suspension of cells resulted in a small alkalinization of the external medium. These data are consistent with the view that the lactose carrier can accumulate sucrose by a proton cotransport system. The carrier exhibits a very low affinity for the disaccharide (150 mM) but a moderately rapid Vmax.  相似文献   

3.
alpha-p-Nitrophenylgalactoside was found to be accumulated by the lactose transport-system of Escherichia coli. This fact may help to resolve the differences in the reported number of sugar binding sites of the lactose transport protein in nonenergized and energized membrane vesicles.  相似文献   

4.
5.
Although it is energetically extremely unfavorable to have charged amino acid residues of a polypeptide in the hydrophobic environment of the membrane phospholipid bilayer, a few such charged residues are found in membrane-spanning regions of membrane proteins. Ion pairs (salt bridges) would be much more stable in low dielectric media than single ionized residues. This paper provides indirect evidence for a salt bridge between Asp-240 and Lys-319 in the lactose carrier of Escherichia coli. When Asp-240 was changed to alanine by site-directed mutagenesis, there was a loss of the ability to accumulate methyl-beta-D-thiogalactopyranoside (TMG), melibiose, or lactose. Fast-growing revertants were isolated on melibiose minimal agar plates. Two second-site revertants were isolated: Asp-240-->Ala plus Gly-268-->Val and Asp-240-->Ala plus Lys-319-->Gln. These revertants showed extremely poor accumulation of TMG, melibiose, and lactose, but showed significant "downhill" lactose entry into beta-galactosidase-containing cells with sugar concentrations of 2 and 5 mM. It is concluded that there is some important interaction between Asp-240 and Lys-319, possibly a salt bridge.  相似文献   

6.
The location of flurophores specifically bound to the lactose/H+ carrier of Escherichia coli was ascertained by the use of various collisional quenchers. The reporter groups were (1) the pyrenyl residue of N-(1-pyrenyl)maleimide attached to the essential cysteine residue 148, which is presumably at or near the galactoside binding site, and (2) the dansyl moieties of a series of fluorescent substrate molecules. The accessibility of these fluorophores from the lipid phase was assessed by nitroxyl-labelled fatty acids and phospholipids. By using a series of nitroxyl-labelled fatty acids carrying the quencher at different positions in the acyl chain, the position of a quenchable fluorophore with respect to the membrane normal can be determined. The accessibility of fluophores from the aqueous phase was assessed by using a water-soluble quencher, the N-methylpicolinium ion. The results of quenching studies suggest that the galactoside binding site is located within the carrier and that this binding site communicates with the aqueous phase through a pore.  相似文献   

7.
Localization of acyl carrier protein in Escherichia coli.   总被引:2,自引:1,他引:2       下载免费PDF全文
Acyl carrier protein was localized by immunoelectron microscopy in the cytoplasm of Escherichia coli. These data are inconsistent with the previous report of an association between acyl carrier protein and the inner membrane (H. Van den Bosch, J.R. Williamson, and P.R. Vagelos, Nature [London] 228:338-341, 1970). Moreover, bacterial membranes did not bind a significant amount of acyl carrier protein or its thioesters in vitro. A thioesterase activity specific for long-chain acyl-acyl carrier protein was associated with the inner membrane.  相似文献   

8.
An E. coli strain containing a recombinant plasmid carrying the E. coli ssbA+ gene has been shown to produce 12 to 15 fold increased amounts of single-strand DNA binding-protein relative to wild-type strains. In addition, a gamma transducing phage carrying the E. coli uvrA+ gene has been shown to also carry the ssbA+ gene and to be capable of producing increased amounts of binding protein.  相似文献   

9.
The transport activity of the lactose carrier of Escherichia coli has been reconstituted in proteoliposomes composed of different phospholipids. The maximal activity was observed with the natural E. coli lipid as well as mixtures containing phosphatidylethanolamine or phosphatidylserine. Phosphatidylcholine or mixtures of phosphatidylcholine with phosphatidylglycerol, phosphatidic acid, or cardiolipin showed low activity. The lactose carrier reconstituted with amino phospholipids of increasing degrees of methylation (dioleoylphosphatidylethanolamine, dioleoylmonomethylphosphatidylethanolamine, dioleoyldimethylphosphatidylethanolamine, and dioleoylphosphatidylcholine) revealed a progressive decrease in both counterflow and proton motive force-driven lactose uptake activities. Trinitrophenylation of phosphatidylethanolamine in the E. coli proteoliposomes resulted in a marked reduction in lactose carrier activity. Partial restitution of transport activity was obtained by detergent extraction of the carrier from these inactive proteoliposomes and reconstitution of the carrier into proteoliposomes containing normal E. coli lipid. These results suggest that the amino group of the amino phospholipids (e.g. phosphatidylethanolamine and phosphatidylserine) is required for the full function of the lactose carrier from E. coli.  相似文献   

10.
11.
12.
Subcellular distribution of plant endo-beta-N-acetylglucosaminidase (endo-beta-GlcNAc-ase) and high-mannose type free N-glycans produced by the endoglycosidase has been analyzed using cotyledons of pumpkin seedlings as the model plant cells. Each organelle in the cotyledons was fractionated by ultracentrifugation with the sucrose density gradient system and the endo-beta-GlcNAc-ase activity in each fraction was assayed with fluorescence labeled N-glycans as substrates. The endoglycosidase activity was exclusively recovered in the soluble fraction (cytosol fraction) but not in other specific organellar fractions, suggesting that the endoglycosidase would reside predominantly in the cytosol. The quantitative analysis of high-mannose type free N-glycans occurring in each fraction showed that more than 70% of the free N-glycans was recovered from the soluble fraction, suggesting the endoglycosidase would work in the cytosol and the resulting free N-glycans would accumulate in the same fraction. The pumpkin endo-beta-GlcNAc-ase (endo-CM) partially purified from the cotyledons showed optimum activity around pH 6.5, supporting this enzyme would reside in the cytosol. Furthermore, the detailed analysis of substrate specificity of endo-CM using various high-mannose type N-glycans showed that the pumpkin enzyme, as well as other plant endo-beta-N-acetylglucosaminidases, were highly active toward the high-mannose type glycans bearing the Man(alpha1)-2Man(alpha1)-3Man(beta1)-structural unit.  相似文献   

13.
The lacY from Escherichia coli strains 020 and AE43 have been cloned on plasmids which were designated p020-K358T and pAE43-D237N. These lacY mutants contain amino acid substitutions changing Lys-358 to Thr or Asp-237 to Asn, respectively. The charge neutralizing effect of each mutation is associated with a functional defect in melibiose transport which we exploited in order to isolate second site revertants to the melibiose-positive phenotype. Eleven melibiose-positive revertants of p020-K358T were isolated. All contained a second-site mutation converting Asp-237 to a neutral amino acid (8 to Asn, 1 to Gly, and 2 to Tyr). Twelve melibiose-positive revertants of pAE43-D237N were isolated. Two were second-site revertants converting Lys-358 to a neutrally Gln residue, while the remainder directly reverted Asn-237 to the wild-type Asp-237. We conclude that the functional intimate relationship between Asp-237 and Lys-358 suggests that these residues may be closely juxtaposed in three-dimensional space, possibly forming a 'charge-neutralizing' salt bridge.  相似文献   

14.
Two forms of beta-ketoacyl-acyl carrier protein (ACP) synthetase (designated I and II) have been identified in extracts of Escherichia coli. Synthetase I corresponds to the condensing enzyme that was studied earlier (GREENSPAN, M.D., ALBERTS, A.W., and VAGELOS, P.R. (1969) J. Biol. Chem. 244, 6477-6485); synthetase II represents a new form of the enzyme. Synthetase II was isolated as a homogeneous protein. It differs from synthetase I in having a higher molecular weight (76,999 versus 66,000), a lower pH optimum (5.5 to 6.1 versus 7.2), and a greater resistance to denaturation by heat. Synthetase II is similar to synthetase I in that both are inactivated by iodoacetamide, and prior incubation of the enzymes with fatty acyl thioesters prevents the inhibitory effect of iodoacetamide. Both also react with a fatty acyl thioester to form an acyl-enzyme intermediate, and the latter reacts with malonyl-ACP to form a beta-ketoacyl thioester. Specificity studies indicated that synthetase II, like synthetase I, has similar affinities with saturated and cis unsaturated fatty acyl thioesters of ACP that are intermediates in the synthesis of saturated and unsaturated fatty acids, respectively. The two synthetases differ only with respect to reactivity with palmitoleyl thioesters: synthetase II has a lower Km and higher Vmax than synthetase I with palmitoleyl-ACP. This finding suggests that synthetase II functions specifically in the elongation of palmitoleyl-ACP to form cis-vaccenyl-ACP. An investigation of synthetases I and II in two classes of unsaturated fatty acid auxotrophs revealed that synthetase I is absent in one class, fabB. Addition of wild type synthetase I to fabB fatty acid synthetase, which synthesizes only saturated fatty acids, permitted this fatty acid synthetase to synthesize unsaturated fatty acids. These experiments indicate that synthetase I plays a critical role in the synthesis of unsaturated fatty acids.  相似文献   

15.
Structure of the lac carrier protein of Escherichia coli   总被引:52,自引:0,他引:52  
Circular dichroic measurements on the lac carrier protein purified from the cytoplasmic membrane of Escherichia coli indicate that 85 +/- 5% of the amino acid residues comprising this integral membrane protein are arranged in helical secondary structures. Analysis of the sequential hydropathic character of this protein by the method of Kyte and Doolittle (J. Mol. Biol. (1982) 157, 105-132) indicates that the protein is composed of at least 12 hydrophobic segments with a mean length of 24 +/- 4 residues/segment. Approximately 70% of the 417 amino acids in the lac carrier are found in these domains. The hydropathic profile, together with the circular dichroic measurements, suggest that the 12 hydrophobic segments are largely in a helical conformation. If the segments are assumed to be alpha-helical, the mean length of each domain approximates the thickness of the most hydrophobic portion of the lipid bilayer. Based on these considerations, it is proposed that the lac carrier protein consists of at least 12 alpha-helical segments that traverse the membrane in a perpendicular sense, i.e. in a fashion similar to bacteriorhodopsin.  相似文献   

16.
In order to isolate very strong promoters from bacteria and bacteriophage a plasmid named pProm was constructed. It possesses an origin (ORI) for replication in Gram-negative bacteria, an ORI for replication in Gram-positive bacteria, a promoterless ampicillin resistance gene with a multiple cloning site (MCS) in the position formerly occupied by the ampicillin promoter, a tetracycline resistance gene for selection in Gram-negative bacteria and a chloramphenicol resistance gene for selection in Gram-positive bacteria. Insertion in the MCS of DNA fragments of Staphylococcus aureus bacteriophages resulted in isolation of several clones very resistant to ampicillin. The DNA fragments inserted in these recombinant plasmids were sequenced and all of them contained putative promoter motifs. Direct measurement of the penicillinase activity indicated that one of the isolated promoters could be included within a group of the stronger known prokaryotic promoters. According to these results pProm is a powerful tool to perform studies on promoter strength and for industrial applications.  相似文献   

17.
In the present study, Cys-176 and Cys-234 in the lactose carrier have been modified to serine residues via site-specific mutagenesis. The resultant mutants have been characterized with regard to galactoside transport activity and sulfhydryl reagent sensitivity. The mutant proteins (in which Cys-176 or Cys-234 had been replaced with serine) are able to effectively transport galactosides, although the transport rates for lactose and methyl-beta-D-galactopyranoside are slightly reduced compared to the normal lactose carrier. In addition, both mutants are less sensitive than the wild-type to high concentrations of two different sulfhydryl reagents, N-ethylmaleimide and p-hydroxymercuribenzoate. Overall, the data are consistent with the idea that Cys-176 and Cys-234 are close to the substrate recognition site. However, neither residue appears to be essential for galactoside transport by providing an ionizable group near the active site or by forming a disulfide bond.  相似文献   

18.
The 4′-phosphopantetheine prosthetic group of holoacyl carrier protein (holoACP) in Escherichia coli turns over independently of the apoprotein, due to the activities of holoACP hydrolase and holoACP synthetase. There is no measurable pool of apoACP in pantothenate-supplemented cells of a pantothenate-requiring mutant, but extended incubation on deficient medium, with exhaustion of cellular coenzyme A (CoA), leads to slow accumulation of the apoprotein. It is concluded that, although the activities of the synthetase and hydrolase are about equal in crude extracts, in the cells an excess synthetase activity maintains ACP completely as holoACP unless cells are artifically depleted of CoA, the donor of the 4′-phosphopantetheine group. About 20% of the holoACP in normal cells was designated as “holoACP esters,” being resistant to S-alkylation unless first treated with neutral hydroxylamine; this proportion increased to about 80% in pantothenate starvation. A preliminary attempt to identify acyl portions from this material was unsuccessful. The proportion of this material was not elevated in other strains under conditions which show feedback inhibition of fatty acid biosynthesis in vivo.  相似文献   

19.
The cysteine residue at position 148 in the lactose carrier protein of Escherichia coli has been replaced by serine using oligonucleotide-directed, site-specific mutagenesis of the lac Y gene. The mutant carrier is incorporated into the cytoplasmic membrane to the same extent as the wild-type carrier, confers a lactose-positive phenotype on cells, and actively transports lactose and other galactosides. However, the maximum rate of transport for several substrates is reduced by a factor of 6-10 while the apparent affinity is reduced by a factor of 2-4. Carrier activity in the mutant is much less sensitive to sulfhydryl reagents (HgCl2, p-(chloromercuri)benzenesulfonate and N-ethylmaleimide) than in the wild type, and beta-D-galactosyl 1-thio-beta-D-galactoside does not protect the mutant carrier against slow inactivation by N-ethylmaleimide. It is concluded that the Cys148 residue is not essential for carrier-catalyzed galactoside: proton symport and that its alkylation presumbly prohibits access of the substrate to the binding site by steric hindrance. A serine residue at position 148 in the amino acid sequence appears to alter the protein structure in such a way that one or more sulfhydryl groups elsewhere in the protein become accessible to alkylating agents thereby inhibiting transport. Recently, Trumble et al. [(1984) Biochem. Biophys. Res. Commun. 119, 860-867] arrived at similar conclusions by investigating a mutant carrier with a Cys148----Gly148 replacement.  相似文献   

20.
The conformations of Escherichia coli acyl carrier protein (ACP) and acetylated ACP have been studied as a function of pH and salt concentration by circular dichroism measurements. The results show that the amino groups of ACP in their protonated form are important for maintaining the native conformation of the protein at physiological pH. However, externally added cations (divalent more effectively than monovalent ones) can substitute for the ammonium groups in maintaining the ordered structure pf ACP. It is suggested that both the ammonium groups of ACP and externally added cations reduce the repulsion between carboxylate groups of ACP and thereby prevent the unfolding of the protein. A reduction of the number of negatively charged carboxylate groups by either protonation or chemical modification abolished the requirement for either ammonium groups or other cations. A qualitative agreement between the effect of salt on the conformation and on the biological activity of acetylated ACP has been observed. The single arginine residue of acetylated ACP has been modified by treatment with a trimer of 2,3-butanedione with the resulting derivative of ACP retaining most of its biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号