首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skull morphologies and dental wear patterns have been examined in four sauropod genera to evaluate their probable feeding mechanisms. Wear facets on teeth are generally confined to their apices in Brachiosaurus and Dicraeosaurus and they are sometimes also present on the mesial and distal carinae. Skull morphology and dental wear patterns in Diplodocus and Dicraeosaurus are consistent with a raking motion of the jaws during feeding. Diplodocus became mechanically adapted to feed in this way by evolving anteriorly directed teeth in the premaxilla and mesial parts of the maxilla, and by changing the direction of jaw adduction relative to the long axis of the skull. Similar features are present in the few known skulls of Apatosaurus and they may also have been present in Dicraeosaurus. In Brachiosaurus dental wear patterns also imply a raking motion of the jaws, although the more robust skull and teeth and the more vertically directed action of the jaw adductor muscles have led some to suggest the possibility of isognathous occlusion. Camarasaurus employed a powerful bite in its feeding, possibly with slight propaliny of the lower jaw, and its skull was modified to cope with increased stresses arising from mastication. Archaic sauropods appear largely to have employed isognathic occlusion in chopping off vegetation. The raking motion employed by diplodocids and dicraeosaurids was an advanced mode of cropping and stripping, linked evolutionarily to their highly apomorphic cranial morphology.  相似文献   

2.
Abstract: The taxonomic status of the sauropodomorph dinosaurs from the Newark Supergroup of north‐eastern USA is reviewed. The inclusion of the three articulated skeletons from Wolcott’s Quarry, Manchester, Connecticut in a single species is supported. Despite claims to the contrary the Manchester skeletons can be referred to the species Anchisaurus polyzelus, which is based on a fragmentary specimen from Massachusetts. Two autapomorphies: dorsoventrally flattened ischial blades set at a low angle to each other and slender sacral ribs of the first sacral vertebra, link the holotype of A. polyzelus to the Manchester specimens. A revised diagnosis of the species and new skull reconstruction are presented. Recent anatomical observations of A. polyzelus indicate that several character states used to assess its phylogenetic position require revision. However, these are not sufficient to overturn previous cladistic analyses. A revised cladistic analysis continues to find support for Anchisaurus as a relatively derived basal sauropodomorph that lies outside of the clade Melanorosaurus + Sauropoda but is more closely related to it than to ‘core prosauropods’ such as Plateosaurus and Massospondylus.  相似文献   

3.
Abstract: Here, we describe a new species of Azendohsaurus from the Middle–Late Triassic of Madagascar, extending the geographical range of a taxon known otherwise only by a single species from Morocco. Although Azendohsaurus has consistently been regarded as an early dinosaur (based on various advanced dental and gnathic features resembling those characterizing certain dinosaur subgroups), the relatively complete skeletal material, now available from Madagascar, argues strongly against its dinosaurian affinities. Rather, the retention of numerous primitive cranial and postcranial features indicates a surprisingly early divergence of Azendohsaurus within Archosauromorpha and an unusual mosaic of characters in this taxon. Features considered diagnostic of Sauropodomorpha thus are inferred to occur homoplastically in at least one clade of nondinosaurian archosauromorphs, indicating a complex evolution and distribution of features traditionally thought to be derived within archosaurs. Azendohsaurus has teeth resembling those of both early sauropodomorph and ornithischian dinosaurs, yet also possesses numerous inarguable basal archosauromorph cranial and postcranial attributes. This highlights the risk of uncritically referring isolated, Middle–Late Triassic (or even later), ‘leaf‐shaped’ teeth with denticles to the Dinosauria. Similarly, the occurrence of such teeth in an early diverging archosauromorph indicates that specializations for herbivory originated more frequently within this clade than conventionally assumed. For example, Azendohsaurus and numerous basal sauropodomorph dinosaur taxa share an array of convergently acquired features associated with herbivory, including tooth denticles, expanded tooth crowns, a downturned dentary and the articular located at the ventral margin of the mandible. Some of these features (denticles, expanded crowns and the ventrally deflected articular) are even more widespread among archosauromorphs, including aetosaurs, silesaurs and ornithischian dinosaurs. A downturned dentary also occurs in Trilophosaurus, a taxon further marked by unique specializations for herbivory, including transversely lophate, tricuspid teeth. An array of features associated with herbivory also occurs in rhynchosaurs and certain crocodilians (e.g. Simosuchus). This distribution suggests that craniodental features associated with herbivory were much more pervasive across the archosauromorph clade than previously recognized, possibly evolving at least six to eight times independently.  相似文献   

4.
High megaherbivore species richness is documented in both fossil and contemporary ecosystems despite their high individual energy requirements. An extreme example of this is the Late Jurassic Morrison Formation, which was dominated by sauropod dinosaurs, the largest known terrestrial vertebrates. High sauropod diversity within the resource-limited Morrison is paradoxical, but might be explicable through sophisticated resource partitioning. This hypothesis was tested through finite-element analysis of the crania of the Morrison taxa Camarasaurus and Diplodocus. Results demonstrate divergent specialization, with Camarasaurus capable of exerting and accommodating greater bite forces than Diplodocus, permitting consumption of harder food items. Analysis of craniodental biomechanical characters taken from 35 sauropod taxa demonstrates a functional dichotomy in terms of bite force, cranial robustness and occlusal relationships yielding two polyphyletic functional ‘grades’. Morrison taxa are widely distributed within and between these two morphotypes, reflecting distinctive foraging specializations that formed a biomechanical basis for niche partitioning between them. This partitioning, coupled with benefits associated with large body size, would have enabled the high sauropod diversities present in the Morrison Formation. Further, this provides insight into the mechanisms responsible for supporting the high diversities of large megaherbivores observed in other Mesozoic and Cenozoic communities, particularly those occurring in resource-limited environments.  相似文献   

5.
The cranial and hyobranchial muscles of the Triassic temnospondyl Gerrothorax have been reconstructed based on direct evidence (spatial limitations, ossified muscle insertion sites on skull, mandible, and hyobranchium) and on phylogenetic reasoning (with extant basal actinopterygians and caudates as bracketing taxa). The skeletal and soft‐anatomical data allow the reconstruction of the feeding strike of this bottom‐dwelling, aquatic temnospondyl. The orientation of the muscle scars on the postglenoid area of the mandible indicates that the depressor mandibulae was indeed used for lowering the mandible and not to raise the skull as supposed previously and implies that the skull including the mandible must have been lifted off the ground during prey capture. It can thus be assumed that Gerrothorax raised the head toward the prey with the jaws still closed. Analogous to the bracketing taxa, subsequent mouth opening was caused by action of the strong epaxial muscles (further elevation of the head) and the depressor mandibulae and rectus cervicis (lowering of the mandible). During mouth opening, the action of the rectus cervicis muscle also rotated the hyobranchial apparatus ventrally and caudally, thus expanding the buccal cavity and causing the inflow of water with the prey through the mouth opening. The strongly developed depressor mandibulae and rectus cervicis, and the well ossified, large quadrate‐articular joint suggest that this action occurred rapidly and that powerful suction was generated. Also, the jaw adductors were well developed and enabled a rapid mouth closure. In contrast to extant caudate larvae and most extant actinopterygians (teleosts), no cranial kinesis was possible in the Gerrothorax skull, and therefore suction feeding was not as elaborate as in these extant forms. This reconstruction may guide future studies of feeding in extinct aquatic tetrapods with ossified hyobranchial apparatus. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.

Certain distinctive features of the skull and postcranial skeleton of Lystrosaurus are discussed. The mechanics of the skull are re‐evaluated and it is concluded that the skull was modified relative to Permian forms to produce a bigger bite force and more vertical component of the adductor muscles, while preserving a wide gape. A zone of weakness, acting as a shock absorption system, was present in the premaxillary‐nasal region of the skull. Antero‐posterior movement of the lower jaw had been reduced. It is concluded that the skull was used to crush resistant plant matter.

The external nasal opening presents no evidence for a valvular structure, but may have housed a nasal gland.

The flared scapula produced a slightly greater mechanical advantage in the limb protractors and retractors.

The manus was short and broad, suitable for digging, but the claws were flat and rounded.

The wide knee‐joint indicated powerful foot‐moving muscles.

The palaeoenvironment of the Lystrosaurus‐Thrinaxodon Assemblage Zone is examined. It was probably drier than usually described. The fauna contained many terrestrial elements.

Lystrosaurus was probably a fully terrestrial animal which may have excavated burrows for itself, but was not a committed burrower like Cistecephalus.  相似文献   

7.
Scaling predictions pioneered by A.V. Hill state that isometric changes in kinematics result from isometric changes in size. These predictions have been difficult to support because few animals display truly isometric growth. An exception to this rule is said to be the toads in the genus Bufo, which can grow over three orders of magnitude. To determine whether skull shape increases isometrically, I used linear measurements and geometric morphometrics to quantify shape variation in a size series of 69 skulls from the marine toad, B. marinus. Toads ranged in body mass from 1.8 gm to a calculated 1,558.9 gm. Of all linear measurements (S/V length, skull width, skull length, levator mass, depressor mass, adductor foramen area), only the area of the adductor foramen increased faster than body mass; the remaining variables increased more slowly. In addition, modeling the lower jaw as a lever‐arm system showed that the lengths of the closing in‐ and out‐levers scaled isometrically with body mass despite the fact that the skull itself is changing allometrically. Geometric morphometrics discerned areas of greatest variability with increasing body mass at the rear of the skull in the area of the squamosal bone and the adductor foramen. This increase in area of the adductor foramen may allow more muscle to move the relatively greater mass of the lower jaw in larger toads, although adductor mass scales with body mass. If B. marinus feeds in a similar manner to other Bufo, these results imply that morphological allometry may still result in kinematic isometry. J. Morphol. 241:115–126, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
The frogs Ascaphus truei and Leiopelma hochstetteri are members of the most basal lineages of extant anurans. Their cranial muscles have not been previously described in full and are investigated here by dissection. Comparison of these taxa is used to review a controversy regarding the homologies of the jaw adductor muscles in Lissamphibia, to place these homologies in a wider gnathostome context, and to define features that may be useful for cladistic analysis of Anura. A new muscle is defined in Ascaphus and is designated m. levator anguli oris. The differences noted between Ascaphus and Leiopelma are in the penetration of the jaw adductor muscles by the mandibular nerve (V3). In the traditional view of this anatomy, the paths of the trigeminal nerve branches define homologous muscles. This scheme results in major differences among frogs, salamanders, and caecilians. The alternative view is that the topology of origins, insertions, and fiber directions are defining features, and the nerves penetrate the muscle mass in a variable way. The results given here support the latter view. A new model is proposed for Lissamphibia, whereby the adductor posterior (levator articularis) is a separate entity, and the rest of the adductor mass is configured around it as a folded sheet. This hypothesis is examined in other gnathostomes, including coelacanth and lungfish, and a possible sequence for the evolution of the jaw muscles is demonstrated. In this system, the main jaw adductor in teleost fish is not considered homologous with that of tetrapods. This hypothesis is consistent with available data on the domain of expression of the homeobox gene engrailed 2, which has previously not been considered indicative of homology. Terminology is discussed, and “adductor mandibulae” is preferred to “levator mandibulae” to align with usage in other gnathostomes. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
10.
The cranial anatomy of the Lower Jurassic ornithischian dinosaur Heterodontosaurus tucki Crompton & Charig, 1962 is described in detail for the first time on the basis of two principal specimens: the holotype (SAM‐PK‐K337) and referred skull (SAM‐PK‐K1332). In addition several other specimens that have a bearing on the interpretation of the anatomy and biology of Heterodontosaurus are described. The skull and lower jaw of Heterodontosaurus are compact and robust but perhaps most notable for the heterodont dentition that merited the generic name. Details of the cranial anatomy are revealed and show that the skull is unexpectedly specialized in such an early representative of the Ornithischia, including: the closely packed, hypsodont crowns and ‘warping’ of the occlusal surfaces (created by progressive variation in the angulation of wear on successive crowns) seen in the cheek dentition; the unusual sutural relationships between the bones along the dorsal edge of the lower jaw; the very narrow, deeply vaulted palate and associated structures on the side wall of the braincase; and the indications of cranial pneumatism (more commonly seen in basal archosaurs and saurischian dinosaurs). Evidence for tooth replacement (which has long been recognized, despite frequent statements to the contrary) is suggestive of an episodic, rather than continuous, style of tooth replacement that is, yet again, unusual in diapsids generally and particularly so amongst ornithischian dinosaurs. Cranial musculature has been reconstructed and seems to conform to that typically seen in diapsids, with the exception of the encroachment of M. adductor mandibulae externus superficialis across the lateral surface of the temporal region and external surface of the lower jaw. Indications, taken from the unusual shape of the occlusal surfaces of the cheek dentition and jaw musculature, are suggestive of a novel form of jaw action in this dinosaur. The taxonomy of currently known late Karoo‐aged heterodontosaurids from southern Africa is reviewed. Although complicated by the inadequate nature of much of the known material, it is concluded that two taxa may be readily recognized: H. tucki and Abrictosaurus consors. At least one additional taxon is recognized within the taxa presently named Lanasaurus and Lycorhinus; however, both remain taxonomically problematic and their status needs to be further tested and may only be resolved by future discoveries. The only other named taxon, Geranosaurus atavus, represents an invalid name. The recognition of at least four distinct taxa indicates that the heterodontosaurids were speciose within the late Karoo ecosystem. The systematics of Heterodontosaurus and its congeners has been analysed, using a restricted sample of taxa. A basal (nongenasaurian) position within Ornithischia is re‐affirmed. There are at least four competing hypotheses concerning the phylogenetic placement of the Heterodontosauridae, so the evidence in support of the various hypotheses is reviewed in some detail. At present the best‐supported hypothesis is the one which places Heterodontosauridae in a basal (non‐genasaurian) position; however, the evidence is not fully conclusive and further information is still needed in respect of the anatomy of proximate outgroups, as well as more complete anatomical details for other heterodontosaurids. Heterodontosaurids were not such rare components of the late Karoo ecosystem as previously thought; evidence also suggests that from a phylogenetic perspective they occupied a potentially crucial position during the earliest phases of ornithischian dinosaur evolution. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011.  相似文献   

11.
12.
Bite force is a measure of feeding performance used to elucidate links between animal morphology, ecology, and fitness. Obtaining live individuals for in vivo bite-force measurements or freshly deceased specimens for bite force modeling is challenging for many species. Thomason's dry skull method for mammals relies solely on osteological specimens and, therefore, presents an advantageous approach that enables researchers to estimate and compare bite forces across extant and even extinct species. However, how accurately the dry skull method estimates physiological cross-sectional area (PCSA) of the jaw adductor muscles and theoretical bite force has rarely been tested. Here, we use an ontogenetic series of southern sea otters (Enhydra lutris nereis) to test the hypothesis that skeletomuscular traits estimated from the dry skull method accurately predicts test traits derived from dissection-based biomechanical modeling. Although variables from these two methods exhibited strong positive relationships across ontogeny, we found that the dry skull method overestimates PCSA of the masseter and underestimates PCSA of the temporalis. Jaw adductor in-levers for both jaw muscles and overall bite force are overestimated. Surprisingly, we reveal that sexual dimorphism in craniomandibular shape affects temporalis PCSA estimations; the dry skull method predicted female temporalis PCSA well but underestimates male temporalis PCSA across ontogeny. These results highlight the importance of accounting for sexual dimorphism and other intraspecific variation when using the dry skull method. Together, we found the dry skull method provides an underestimation of bite force over ontogeny and that the underlying anatomical components driving bite force may be misrepresented.  相似文献   

13.
14.
The cranial anatomy of the plagiosaurid temnospondyl Plagiosuchus pustuliferus, from the Middle Triassic of Germany, is described in detail on the basis of a newly discovered skull and mandibular material. The highly derived skull is characterized by huge orbitotemporal fenestrae, a reduction of the circumorbital bones – the prefrontal, postfrontal and (probably) postorbital are lost – and the expansion of the jugal to occupy most of the lateral skull margin. Ventrally the extremely long subtemporal vacuities correlate with the elongate adductor fossa of the mandible. The dentition is feebly developed on both skull and mandible. Ossified ?ceratobranchials and ‘branchial denticles’ indicate the presence of open gills clefts in life. The remarkably divergent cranial morphology of P. pustuliferus highlights the extraordinary cranial diversity within the Plagiosauridae, probably unsurpassed within the Temnospondyli. Specific structural aspects of the skull – including an extremely short marginal tooth row, feeble dentition and an elongated chamber for adductor musculature – together with evidence for a hyobranchial skeleton, suggests that P. pustuliferus utilized directed suction feeding for prey capture. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 348–373.  相似文献   

15.
The kinetics of the head and function of select jaw muscles were studied during biting behavior in the lemon shark, Negaprion brevirostris. High speed cinematography and electromyography of seven cranial muscles were recorded during bites elicited by a probe to the oral cavity. In weak bites mandible depression was followed by mandible elevation and jaw closure without cranial elevation. In strong bites cranial elevation always preceded lower jaw depression, lower jaw elevation, and cranial depression. The average duration of the strong bites was rapid (176 msec), considering the size of the animal relative to other fishes. Different electromyographic patterns distinguished the two forms of bite, primarily in activity of the epaxial muscles, which effect cranial elevation. A composite reconstruction of the activity of seven cranial muscles during biting revealed that epaxial muscle activity and consequently cranial elevation preceded all other muscle activity. Mandible depression was primarily effected by contraction of the common coracoarcual and coracomandibularis, with assistance by the coracohyoideus. Simultaneous activity of the levator hyomandibulae is believed to increase the width of the orobranchial chamber. The adductor mandibulae dorsal was the primary jaw adductor assisted by the adductor mandibulae ventral. This biomechanically conservative mechanism for jaw opening in aquatic vertebrates is conserved, with the exception of the coracomandibularis, which is homologous to prehyoid muscles of salamanders.  相似文献   

16.
We examined the mandibles of 377 individuals representing 25 species, 12 genera, 5 tribes, and 2 subfamilies of the Loricariidae, a species‐rich radiation of detritivorous–herbivorous neotropical freshwater fishes distinguished by having a ventral oral disk and jaws specialized for surface attachment and benthic feeding. Loricariid mandibles are transversely oriented and bilaterally independent, each rotating predominantly around its long axis, although rotational axes likely vary with mandibular geometry. On each mandible, we measured three traditional and three novel morphological parameters chosen primarily for their functional relevance. Five parameters were linear distances and three of these were analogous to traditional teleost in‐ and out‐levers for mandibular adduction. The sixth parameter was insertion area of the combined adductor mandibulae muscle (AMarea), which correlated with adductor mandibulae volume across a subset of taxa and is interpreted as being proportional to maximum force deliverable to the mandible. Multivariate analysis revealed distributions of phylogenetically diagnosed taxonomic groupings in mandibular morphospace that are consistent with an evolutionary pattern of basal niche conservatism giving rise to multiple adaptive radiations within nested clades. Correspondence between mandibular geometry and function was explored using a 3D model of spatial relationships among measured parameters, potential forces, and axes of rotation. By combining the model with known loricariid jaw kinematics, we developed explicit hypotheses for how individual parameters might relate to each other during kinesis. We hypothesize that the ratio [AMarea/tooth row length2] predicts interspecific variation in the magnitude of force entering the mandible per unit of substrate contacted during feeding. Other newly proposed metrics are hypothesized to predict variation in aspects of mandibular mechanical advantage that may be specific to Loricariidae and perhaps shared with other herbivorous and detritivorous fishes. 2011. © 2011Wiley Periodicals, Inc.  相似文献   

17.
Sauropod dinosaurs were quadrupedal herbivores with a highly specialized body plan that attained the largest masses of any terrestrial vertebrates. Recent discoveries have shown that key traits associated with sauropod gigantism appeared stepwise during the Late Triassic and Early Jurassic in evolutionary ‘cascades’ of associated changes, in which a ‘head and neck’ cascade has been suggested as an important module. Here, we investigate the evolutionary transformation of the sauropodomorph braincase, using discrete anatomical characters, prompted by the reanalysis of a Middle Jurassic (Bathonian) sauropodiform braincase from England. Our analysis shows that sauropod braincases are highly distinct, and occupy a different region of morphospace than their evolutionary relatives. This resulted from anatomical transformations including a set of changes in the surface attachments of craniocervical musculature, which may indicate integrated evolution between neck elongation and transformation in braincase anatomy. Neck elongation in Late Triassic and Early or Middle Jurassic taxa is potentially associated with episodes of skull reduction, indicating that the ‘head and neck’ cascade was activated more than once in the evolutionary history of Sauropodomorpha. The re‐activation of this cascade in the Jurassic may have impacted on the differential survival of sauropodomorph lineages through the Early and Middle Jurassic.  相似文献   

18.
A dinosaur tracksite in the Lower Jurassic Ziliujing Formation of Sichuan Province, China consists of a spectacular sub-vertical exposure, with multiple track-bearing levels and trackways showing parallel and bimodal orientations. Based on well-preserved material, the new ichnogenus and ichnospecies, Liujianpus shunan ichnogen. nov. ichnosp. nov. is erected to accommodate distinctive sauropodomorph trackways occurring in this assemblage. Liujianpus has a unique combination of features, some relating to the early Jurassic basal sauropodomorph (prosauropod in traditional usage) ichnogenus Otozoum, others to the sauropod ichnogenus Brontopodus. Despite such a mix of basal sauropodomorph- and sauropod-like features, the trackmaker of Liujianpus is likely a basal sauropodomorph. This identification is consistent with the occurrence of basal sauropodomorph skeletons from geographically and chronologically close localities. The other distinct morphotype from the tracksite is linked to a sauropod trackmaker. As such, the ichnofauna consisting of two distinct foot morphotypes reflects the diversity of sauropodomorph dinosaurs in the Early Jurassic of Asia.  相似文献   

19.
In many species of lizards, males attain greater body size and have larger heads than female lizards of the same size. Often, the dimorphism in head size is paralleled by a dimorphism in bite force. However, the underlying functional morphological basis for the dimorphism in bite force remains unclear. Here, we test whether males are larger, and have larger heads and bite forces than females for a given body size in a large sample of Anolis carolinensis . Next, we test if overall head shape differs between the sexes, or if instead specific aspects of skull shape can explain differences in bite force. Our results show that A. carolinensis is indeed dimorphic in body and head size and that males bite harder than females. Geometric morphometric analyses show distinct differences in skull shape between males and females, principally reflecting an enlargement of the jaw adductor muscle chamber. Jaw adductor muscle mass data confirm this result and show that males have larger jaw adductors (but not jaw openers) for a given body and head size. Thus, the observed dimorphism in bite force in A. carolinensis is not merely the result of an increase in head size, but involves distinct morphological changes in skull structure and the associated jaw adductor musculature.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 111–119.  相似文献   

20.
Lemurs are notable for encompassing the range of body‐size variation for all primates past and present—close to four orders of magnitude. Benefiting from the phylogenetic proximity of subfossil lemurs to smaller‐bodied living forms, we employ allometric data from the skull to probe the ontogenetic bases of size differentiation and morphological diversity across these clades. Building upon prior pairwise comparisons between sister taxa, we performed the first clade‐wide analyses of craniomandibular growth allometries in 359 specimens from 10 lemuroids and 176 specimens from 8 indrioids. Ontogenetic trajectories for extant forms were used as a criterion of subtraction to evaluate morphological variation, and putative adaptations among sister taxa. In other words, do species‐level differences in skull form result from the differential extension of common patterns of relative growth? In lemuroids, a pervasive pattern of ontogenetic scaling is observed for facial dimensions in all genera, with three genera also sharing relative growth trajectories for jaw proportions (Lemur, Eulemur, Varecia). Differences in masticatory growth and form characterizing Hapalemur and fossil Pachylemur likely reflect dietary factors. Pervasive ontogenetic scaling characterizes the facial skull in extant Indri, Avahi, and Propithecus, as well as their larger, extinct sister taxa Mesopropithecus and Babakotia. Significant interspecific differences are observed in the allometry of indrioid masticatory proportions, with variation in the mechanical advantage of the jaw adductors and stress‐resisting elements correlated with diet. As the growth series and adult data are largely coincidental in each clade, interspecific variation in facial form may result from selection for body‐size differentiation among sister taxa. Those cases where trajectories are discordant identify potential dietary adaptations linked to variation in masticatory forces during chewing and biting. Although such dissociations highlight selection to uncouple shared ancestral growth patterns, they occur largely via transpositions and retention of primitive size‐shape covariation patterns or relative growth coefficients. Am. J. Primatol. 72:161–172, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号