首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacteria produce a wide spectrum of biologically active compounds such as microcystins, whose effects on photoautotrophic organisms and role in the aquatic ecosystems have been most intensively discussed and studied. In our study, we examined effects of semipurified Microcystis extract containing microcystins (0.2–20 nM corresponding to 0.2–20 μg L−1) on age-induced cell differentiation of filamentous cyanobacterium Trichormus variabilis. The heterocyst and akinete formation was significantly decreased after exposure to extract containing 2 or 20 nM of microcystins within 10 days of exposure. To our knowledge, this is the first information about effects of metabolites produced by planktonic cyanobacteria on cell differentiation in filamentous cyanobacteria. Since the effects were induced by environmentally relevant concentrations of microcystins, our observations may indicate not only that microcystins or other bioactive peptides could affect conservation, overwintering, and nitrogen-fixation in filamentous cyanobacteria under environmental conditions but also contribute to the understanding of possible signaling function of cyanobacterial metabolites.  相似文献   

2.
Microcystis aeruginosa is a common form of cyanobacteria (blue‐green algae) capable of forming toxic heptapeptides (microcystins) that can cause illness or death. Occasionally, blooms of cyanobacteria have caused toxic fish‐kills in catfish production ponds. We have developed a PCR test that will detect the presence of microcystin‐producing cyanobacteria. Microcystin producers are detected by the presence of the microcystin peptide synthetase B gene (an obligate enzyme in the microcystin pathway), which appears to be present only in toxin‐producing cyanobacteria. These PCR amplifications can be performed in multiplex using purified DNA from pond waters or by two‐stage amplification from native water samples. A synoptic survey of 476 channel catfish production ponds from four states in the southeastern United States revealed that 31% of the ponds have the genetic potential to produce microcystins by toxic algae.  相似文献   

3.
Photosynthetic cyanobacteria have attracted interest as production organisms for third‐generation biofuels, where sunlight and CO2 are used by microbes directly to synthesize fuel molecules. A particularly suitable biofuel is n‐butanol, and there have been several laboratory reports of genetically engineered photosynthetic cyanobacteria capable of synthesizing and secreting n‐butanol. This work evaluates the environmental impacts and cumulative energy demand (CED) of cyanobacteria‐produced n‐butanol through a cradle‐to‐grave consequential life cycle assessment (LCA). A hypothetical production plant in northern Sweden (area 1 ha, producing 5–85 m3 n‐butanol per year) was considered, and a range of cultivation formats and cellular productivity scenarios assessed. Depending on the scenario, greenhouse gas emissions (GHGe) ranged from 16.9 to 58.6 gCO2eq/MJBuOH and the CED from 3.8 to 13 MJ/MJBuOH. Only with the assumption of a nearby paper mill to supply waste sources for heat and CO2 was the sustainability requirement of at least 60% GHGe savings compared to fossil fuels reached, though placement in northern Sweden reduced energy needed for reactor cooling. A high CED in all scenarios shows that significant metabolic engineering is necessary, such as a carbon partitioning of >90% to n‐butanol, as well as improved light utilization, to begin to displace fossil fuels or even first‐ and second‐generation bioethanol.  相似文献   

4.
It is increasingly evident that the molecular and biological functions of long non‐coding RNAs (lncRNA) are vital for understanding the molecular biology and progression of cancer. The lncRNA‐HEIH, a newly identified lncRNA, has been demonstrated to be up‐regulated in hepatocellular cancer. However, little is known about its role in oesophageal squamous cell carcinoma (ESCC). In the present study, an obvious up‐regulation of lncRNA‐HEIH was observed in ESCC compared to the adjacent normal tissues. Meanwhile, patients with high expression of lncRNA‐HEIH have significantly poorer prognosis than those with low expression. We further found that lncRNA‐HEIH was associated with enhancer of zeste homolog 2 (EZH2) and that this association led to the repression of TP53. These findings indicate that lncRNA‐HEIH may serve as a prognostic marker and a potential therapeutic target for ESCC.  相似文献   

5.
6.
The occurrence of toxic cyanobacterial blooms is a serious problem for fast‐developing countries in Africa, such as Ethiopia, that are struggling with significant degradation of the natural environment and limited access to water of good quality. Research undertaken on Lake Tana in Ethiopia between 2009 and 2011 was intended to assess the seasonal threat from cyanobacteria and to select methods for tracking of this threat in the future. The cyanobacterial genus Microcystis was found to be present throughout the monitoring period, and M. aeruginosa was determined as the dominant species. Moreover, in all samples, toxigenic cyanobacteria with the potential to produce microcystins were detected. High levels of microcystins, ranging from 0.58 to 2.65 μg L?1, were detected each November, which indicates that in the postrainy season, water usage should be limited. The correlation between concentrations of chlorophyll‐a and microcystins suggested that chlorophyll‐a could be used as an indicator of the potential presence of cyanobacterial‐derived hepatotoxins in Lake Tana in the future. Furthermore, for quick quantitative confirmation of the presence of microcystins, a simple and rapid ELISA test was recommended.  相似文献   

7.
8.
9.
10.
Brevetoxin (PbTx) is a neurotoxic secondary metabolite of the dinoflagellate Karenia brevis. We used a novel, fluorescent BODIPY‐labeled conjugate of brevetoxin congener PbTx‐2 (B‐PbTx) to track absorption of the metabolite into a variety of marine microbes. The labeled toxin was taken up and brightly fluoresced in lipid‐rich regions of several marine microbes including diatoms and coccolithophores. The microzooplankton (20–200 μm) tintinnid ciliate Favella sp. and the rotifer Brachionus rotundiformis also took up B‐PbTx. Uptake and intracellular fluorescence of B‐PbTx was weak or undetectable in phytoplankton species representative of dinoflagellates, cryptophytes, and cyanobacteria over the same (4 h) time course. The cellular fate of two additional BODIPY‐conjugated K. brevis associated secondary metabolites, brevenal (B‐Bn) and brevisin (B‐Bs), were examined in all the species tested. All taxa exhibited minimal or undetectable fluorescence when exposed to the former conjugate, while most brightly fluoresced when treated with the latter. This is the first study to observe the uptake of fluorescently‐tagged brevetoxin conjugates in non‐toxic phytoplankton and zooplankton taxa, demonstrating their potential in investigating whether marine microbes can serve as a significant biological sink for algal toxins. The highly variable uptake of B‐PbTx observed among taxa suggests some may play a more significant role than others in vectoring lipophilic toxins in the marine environment.  相似文献   

11.
Pleurocapsales are one of the least understood groups of cyanobacteria in terms of molecular systematics and biochemistry. Considering the high number of cryptic taxa within the Synechococcales and Oscillatoriales, it is likely that such taxa also occur in the Pleurocapsales. The new genus described in our research is the first known pleurocapsalean cryptic taxon. It produces off‐flavor and a large number of bioactive metabolites (n = 38) some of which can be toxic including four known microcystins. Using a polyphasic approach, we propose the establishment of the genus Odorella with the new species O. benthonica from material originally isolated from the California Aqueduct near Los Angeles.  相似文献   

12.
1. Warmer temperatures may increase cyanobacterial blooms in freshwater ecosystems, yet few ecological studies examine how increases in temperature and cyanobacterial blooms will alter the performance of non‐native species. We evaluated how competitive interactions and interactions between these two drivers of ecological change influence the performance of non‐native species using the native zooplankton Daphnia pulex and the non‐native zooplankton Daphnia lumholtzi as a model system. Based on the literature, we hypothesised that D. lumholtzi would perform best in warmer temperatures and in the presence of cyanobacteria. 2. Laboratory competition experiments showed that in the absence of competitors, growth rates of D. pulex (but not D. lumholtzi) were reduced at higher temperatures and with the cyanobacterial foods Anabaena flos‐aquae and Microcystis aeruginosa. In the presence of competitors, however, D. pulex emerged as the superior resource competitor at both temperatures with cyanobacterial food. We therefore predicted that, if competitive interactions are important to its establishment, D. lumholtzi would perform best in the absence of cyanobacteria in heated environments. 3. As predicted, when both species were introduced at low densities in field mesocosms, D. lumholtzi performed best at high temperatures without added cyanobacteria and worst at ambient temperatures with added cyanobacteria, indicating that competitive interactions are likely to be important for its establishment. 4. Taken together, these studies indicate that, while D. lumholtzi may benefit from increases in temperature, associated increased cyanobacterial blooms may hinder its performance. Thus, our findings underscore the importance of considering biotic interactions such as competition when predicting the future establishment of non‐native species in response to climate warming.  相似文献   

13.
Many plants have a self‐incompatibility (SI) system in which the rejection of self‐pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S‐RNase) and multiple S‐locus F‐box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S‐RNase is cytotoxic to self‐pollen, whereas SLFs are thought to collaboratively recognize non‐self S‐RNases in cross‐pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCFSLF (SCF = SKP1‐CUL1‐F‐box‐RBX1) from Petunia pollen. The SCFSLF polyubiquitinates a subset of non‐self S‐RNases in vitro. The polyubiquitinated S‐RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCFSLF complexes in cross‐pollen polyubiquitinate non‐self S‐RNases, resulting in their degradation by the proteasome.  相似文献   

14.
Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long‐term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal‐scale monitoring records from north temperate‐subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce , (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce . Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio‐temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate‐subarctic regions.  相似文献   

15.
A defence pathway contributing to non‐host resistance to biotrophic fungi in Arabidopsis involves the synthesis and targeted delivery of the tryptophan (trp)‐derived metabolites indol glucosinolates (IGs) and camalexin at pathogen contact sites. We have examined whether these metabolites are also rate‐limiting for colonization by necrotrophic fungi. Inoculation of Arabidopsis with adapted or non‐adapted isolates of the ascomycete Plectosphaerella cucumerina triggers the accumulation of trp‐derived metabolites. We found that their depletion in cyp79B2 cyp79B3 mutants renders Arabidopsis fully susceptible to each of three tested non‐adapted P. cucumerina isolates, and super‐susceptible to an adapted P. cucumerina isolate. This assigns a key role to trp‐derived secondary metabolites in limiting the growth of both non‐adapted and adapted necrotrophic fungi. However, 4‐methoxy‐indol‐3‐ylmethylglucosinolate, which is generated by the P450 monooxygenase CYP81F2, and hydrolyzed by PEN2 myrosinase, together with the antimicrobial camalexin play a minor role in restricting the growth of the non‐adapted necrotrophs. This contrasts with a major role of these two trp‐derived phytochemicals in limiting invasive growth of non‐adapted biotrophic powdery mildew fungi, thereby implying the existence of other unknown trp‐derived metabolites in resistance responses to non‐adapted necrotrophic P. cucumerina. Impaired defence to non‐adapted P. cucumerina, but not to the non‐adapted biotrophic fungus Erysiphe pisi, on cyp79B2 cyp79B3 plants is largely restored in the irx1 background, which shows a constitutive accumulation of antimicrobial peptides. Our findings imply differential contributions of antimicrobials in non‐host resistance to necrotrophic and biotrophic pathogens.  相似文献   

16.
Helicobacter felis belongs to the fastidious gastric non‐Helicobacter pylori helicobacter species that are typically found in the stomach of cats and dogs. These bacteria have the potential to colonize the human stomach and are then associated with gastritis, gastroduodenal ulcers, and MALT lymphoma. Strains cultured from the human stomach are rare. Here, we present the first isolation of H. felis from a gastric biopsy specimen of a 14‐year‐old girl who presented with persistent epigastric pain. The strain was cultured using our routine protocol for H. pylori and identified by phylogenetic analyses of partial urease AB and gyrB gene sequences.  相似文献   

17.
  • Microcystins are toxins produced by cyanobacteria, notorious for negatively affecting a wide range of living organisms, among which several plant species. Although microtubules are a well‐established target of microcystin toxicity, its effect on filamentous actin (F‐actin) in plant cells has not yet been studied.
  • Τhe effects of microcystin‐LR (MC‐LR) and an extract of a microcystin‐producing freshwater cyanobacterial strain (Microcystis flos‐aquae TAU‐MAC 1510) on the cytoskeleton (F‐actin and microtubules) of Oryza sativa (rice) root cells were studied with light, confocal, and transmission electron microscopy. Considering the role of F‐actin in endomembrane system distribution, the endoplasmic reticulum and the Golgi apparatus in extract‐treated cells were also examined.
  • F‐actin in both MC‐LR- and extract‐treated meristematic and differentiating root cells exhibited time‐dependent alterations, ranging from disorientation and bundling to the formation of ring‐like structures, eventually resulting in a collapse of the F‐actin network after longer treatments. Disorganization and eventual depolymerization of microtubules, as well as abnormal chromatin condensation were observed following treatment with the extract, effects which could be attributed to microcystins and other bioactive compounds. Moreover, cell cycle progression was inhibited in extract‐treated roots, specifically affecting the mitotic events. As a consequence of F‐actin network disorganization, endoplasmic reticulum elements appeared stacked and diminished, while Golgi dictyosomes appeared aggregated.
  • These results support that F‐actin is a prominent target of MC‐LR, both in pure form and as an extract ingredient. Endomembrane system alterations can also be attributed to the effects of cyanobacterial bioactive compounds (including microcystins) on the F‐actin cytoskeleton.
  相似文献   

18.
Cue‐induced heroin seeking after prolonged withdrawal is associated with neuronal activation and altered gene expression in prefrontal cortex (PFC). However, these previous studies assessed gene expression in all neurons regardless of their activity state during heroin seeking. Using Fos as a marker of neural activity, we describe distinct molecular alterations induced in activated versus non‐activated neurons during cue‐induced heroin seeking after prolonged withdrawal. We trained rats to self‐administer heroin for 10 days (6 h/day) and assessed cue‐induced heroin seeking in extinction tests after 14 or 30 days. We used fluorescent‐activated cell sorting (FACS) to purify Fos‐positive and Fos‐negative neurons from PFC 90 min after extinction testing. Flow cytometry showed that Fos‐immunoreactivity was increased in less than 10% of sparsely distributed PFC neurons. mRNA levels of the immediate early genes fosB, arc, egr1, and egr2, as well as npy and map2k6, were increased in Fos‐positive, but not Fos‐negative, neurons. In support of these findings, double‐label immunohistochemistry indicated substantial coexpression of neuropeptide Y (NPY)‐ and Arc‐immunoreactivity in Fos‐positive neurons. Our data indicate that cue‐induced relapse to heroin seeking after prolonged withdrawal induces unique molecular alterations within activated PFC neurons that are distinct from those observed in the surrounding majority of non‐activated neurons.  相似文献   

19.
The interacting effects of global changes—including increased temperature, altered precipitation, reduced acidification and increased dissolved organic matter loads to lakes—are anticipated to create favourable environmental conditions for cyanobacteria in northern lakes. However, responses of cyanobacteria to these global changes are complex, if not contradictory. We hypothesized that absolute and relative biovolumes of cyanobacteria (both total and specific genera) are increasing in Swedish nutrient‐poor lakes and that these increases are associated with global changes. We tested these hypotheses using data from 28 nutrient‐poor Swedish lakes over 16 years (1998–2013). Increases in cyanobacteria relative biovolume were identified in 21% of the study sites, primarily in the southeastern region of Sweden, and were composed mostly of increases from three specific genera: Merismopedia, Chroococcus and Dolichospermum. Taxon‐specific changes were related to different environmental stressors; that is, increased surface water temperature favoured higher Merismopedia relative biovolume in low pH lakes with high nitrogen to phosphorus ratios, whereas acidification recovery was statistically related to increased relative biovolumes of Chroococcus and Dolichospermum. In addition, enhanced dissolved organic matter loads were identified as potential determinants of Chroococcus suppression and Dolichospermum promotion. Our findings highlight that specific genera of cyanobacteria benefit from different environmental changes. Our ability to predict the risk of cyanobacteria prevalence requires consideration of the environmental condition of a lake and the sensitivities of the cyanobacteria genera within the lake. Regional patterns may emerge due to spatial autocorrelations within and among lake history, rates and direction of environmental change and the niche space occupied by specific cyanobacteria.  相似文献   

20.
Congenital melanocytic nevi (CMN) are cutaneous malformations whose prevalence is inversely correlated with projected adult size. CMN are caused by somatic mutations, but epidemiological studies suggest that germline genetic factors may influence CMN development. In CMN patients from the U.K., genetic variants in MC1R, such as p.V92M and loss‐of‐function variants, have been previously associated with larger CMN. We analyzed the association of MC1R variants with CMN characteristics in two distinct cohorts of medium‐to‐giant CMN patients from Spain (N = 113) and from France, Norway, Canada, and the United States (N = 53), similar at the clinical and phenotypical level except for the number of nevi per patient. We found that the p.V92M or loss‐of‐function MC1R variants either alone or in combination did not correlate with CMN size, in contrast to the U.K. CMN patients. An additional case–control analysis with 259 unaffected Spanish individuals showed a higher frequency of MC1R compound heterozygous or homozygous variant genotypes in Spanish CMN patients compared to the control population (15.9% vs. 9.3%; p = .075). Altogether, this study suggests that MC1R variants are not associated with CMN size in these non‐UK cohorts. Additional studies are required to define the potential role of MC1R as a risk factor in CMN development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号