首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Birds play an important role in studies addressing the diversity and species richness of tropical ecosystems, but because of the poor avian fossil record in all extant tropical regions, a temporal perspective is mainly provided by divergence dates derived from calibrated molecular analyses. Tropical ecosystems were, however, widespread in the Northern Hemisphere during the early Cenozoic, and the early Eocene German fossil site Messel in particular has yielded a rich avian fossil record. The Messel avifauna is characterized by a considerable number of flightless birds, as well as a high diversity of aerial insectivores and the absence of large arboreal birds. With about 70 currently known species in 42 named genus‐level and at least 39 family‐level taxa, it approaches extant tropical biotas in terms of species richness and taxonomic diversity. With regard to its taxonomic composition and presumed ecological characteristics, the Messel avifauna is more similar to the Neotropics, Madagascar, and New Guinea than to tropical forests in continental Africa and Asia. Because the former regions were geographically isolated during most of the Cenozoic, their characteristics may be due to the absence of biotic factors, especially those related to the diversification of placental mammals, which impacted tropical avifaunas in Africa and Asia. The crown groups of most avian taxa that already existed in early Eocene forests are species‐poor. This does not support the hypothesis that the antiquity of tropical ecosystems is key to the diversity of tropical avifaunas, and suggests that high diversification rates may be of greater significance.  相似文献   

2.
    
We describe a partial skeleton of a fossil owl (Strigiformes) from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK). The holotype of Ypresiglaux michaeldanielsi, gen. et sp. nov. is one of the most complete specimens of a Palaeogene owl and elucidates the poorly known ecomorphology of stem group Strigiformes. Whereas most of the postcranial bones show the characteristic strigiform morphology, the new species exhibits plesiomorphic features of the skull and cervical vertebrae that differ distinctly from extant owls. A well-developed supraorbital process of the lacrimal bone suggests that the eyes were not as greatly enlarged and forward-facing as in extant owls. A plesiomorphic quadrate morphology indicates differences in the otic region, and a proportionally longer axis suggests that the fossil species was not able to rotate its head to the degree found in crown group Strigiformes. Therefore, the fossil documents a mosaic evolution of the strigiform body plan, with owls developing raptorial adaptations before specializations of the visual and acoustic systems evolved. Because the latter relate to a crespuscular or nocturnal activity pattern, we hypothesize that Ypresiglaux was diurnal. Nocturnality in owls may have evolved in response to the emergence of evolutionary opportunities, which enabled owls to exploit new ecological niches, or owls may have been driven into nocturnal habits by ecological competition.  相似文献   

3.
    
Gerald Mayr 《Ibis》2013,155(2):384-396
A new fossil stem group representative of Coliiformes (mousebirds) with a remarkable skull morphology is described from the late Oligocene of Germany. Oligocolius psittacocephalon sp. nov. for the first time preserves the skull of a post‐Eocene fossil mousebird. This exhibits a combination of skull features unknown from any other bird and converges on the skull of parrots in that the beak is separated from the cranium by a marked nasofrontal hinge and in that the interorbital part of the frontal bones is very wide. In addition, the mandible of the new species exhibits long retroarticular processes, which are unexpected because unlike in other coliiform birds exhibiting this feature, the short beak was probably not used for probing in substrate. It is hypothesized that the retroarticular processes of O. psittacocephalon instead served for a particular wide and forceful opening of the beak. Eight large fruit stones are situated in the area of the digestive tract of the new species. Preservation of most of these in a well‐delimited cluster in the region of the upper oesophagus suggests that, unlike in modern mousebirds, O. psittacocephalon had a crop. The new fossil shows that late Oligocene European stem group Coliiformes significantly differed from their extant relatives in morphology and probably also in feeding ecology.  相似文献   

4.
    
We describe new specimens and species of apodiform birds from the early Eocene London Clay of Walton-on-the Naze (Essex, UK). In addition to multiple partial skeletons of Eocypselus vincenti Harrison, 1984, three new species of Eocypselus are described as Eocypselus geminus, sp. nov., Eocypselus paulomajor, sp. nov. and Eocypselus grandissimus, sp. nov. The previously unknown quadrate of Eocypselus shares a characteristic derived morphology with the quadrate of the Aegothelidae, Hemiprocnidae and Apodidae, whereas the quadrate of the Trochilidae is very different. We also report a striking disparity of the shapes of the axis vertebra of apodiform birds, which is likely to be of functional significance. Eocypselus and extant Hemiprocnidae and Cypseloidini (Apodidae) exhibit the plesiomorphic morphology, whereas a derived shape characterizes extant Aegothelidae, Apodini and Trochilidae. Furthermore, we describe the first partial skeleton of the earliest aegialornithid species, Primapus lacki Harrison & Walker, 1975, which was previously only known from the humeri of the type series that stem from different sites of the London Clay. The apodiform birds from Walton-on-the-Naze show a considerable taxonomic and ecomorphological diversity, and whereas Eocypselus may have inhabited forest edges and caught insects by sallying flights from perches, Primapus probably was a fast-flying and more aerial bird.  相似文献   

5.
The evolutionary history of aquatic invasion in birds would be incomplete without incorporation of extinct species. We show that aquatic affinities in fossil birds can be inferred by multivariate analysis of skeletal features and locomotion of 245 species of extant birds. Regularized discriminant analyses revealed that measurements of appendicular skeletons successfully separated diving birds from surface swimmers and flyers, while also discriminating among different underwater modes of swimming. The high accuracy of this method allows detection of skeletal characteristics that are indicative of aquatic locomotion and inference of such locomotion in bird species with insufficient behavioural information. Statistical predictions based on the analyses confirm qualitative assessments for both foot‐propelled (Hesperornithiformes) and wing‐propelled (Copepteryx) underwater locomotion in fossil birds. This is the first quantitative inference of underwater modes of swimming in fossil birds, enabling future studies of locomotion in extinct birds and evolutionary transitions among locomotor modes in avian lineage.  相似文献   

6.
  总被引:1,自引:1,他引:1  
A recent molecular analysis strongly supported sister group relationship between flamingos (Phoenicopteridae) and grebes (Podicipedidae), a hypothesis which has not been suggested before. Flamingos are long-legged filter-feeders whereas grebes are morphologically quite divergent foot-propelled diving birds, and sister group relationship between these two taxa would thus provide an interesting example of evolution of different feeding strategies in birds. To test monophyly of a clade including grebes and flamingos, I performed a cladistic analysis of 70 morphological characters which were scored for 17 taxa. Parsimony analysis of these data supported monophyly of the taxon (Podicipedidae + Phoenicopteridae) and the clade received high bootstrap support. Previously overlooked morphological, oological and parasitological evidence is recorded which supports this hypothesis, and which makes the taxon (Podicipedidae + Phoenicopteridae) one of the best supported higher-level clades within modern birds. The phylogenetic significance of some fossil flamingo-like birds is discussed. The Middle Eocene taxon Juncitarsus is most likely the sister taxon of the clade (Podicipedidae + (Palaelodidae + Phoenicopteridae)) although resolution of its exact systematic position awaits revision of the fossil material. Contrary to previous assumptions, it is more parsimonious to assume that flamingos evolved from a highly aquatic ancestor than from a shorebird-like ancestor.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 157–169.  相似文献   

7.
Although the avian speciesPumiliornis tessellatus Mayr, 1999 is known from two skeletons from the Middle Eocene of Messel in Germany, its phylogenetic affinities remained enigmatic. The new osteological data presented in this study document thatP. tessellatus had an at least semizygodactyl foot, with a very wide basal phalanx of the fourth toe, and lacked an ossified pons supratendineus on the distal tibiotarsus. Compared to the known zygodactyl and semizygodactyl birds, this tiny Middle Eocene species resembles the late Eocene/early Oligocene taxonEocuculus Chandler, 1999. Anew, tentatively referred wing ofEocuculus from the early Oligocene of France is described and compared withPumiliornis.   相似文献   

8.
GERALD MAYR 《Ibis》2009,151(2):392-395
A tarsometatarsus of a diminutive representative of the Phalacrocoracoidea, the clade including the Phalacrocoracidae (cormorants) and Anhingidae (anhingas), is described from the early Miocene of Germany. The fossil is assigned to a new species Limicorallus (?) carbunculus, and closely resembles the tarsometatarsus of extant Phalacrocoracidae in overall morphology. Limicorallus (?) carbunculus is the smallest representative of the Phalacrocoracoidea, reaching only two‐thirds the size of the extant Pygmy Cormorant Phalacrocorax pygmeus. By significantly lowering the minimum size of the Phalacrocoracoidea, this new species adds to our knowledge of the early diversity of this clade.  相似文献   

9.
    
The Palaeogene Diomedeoididae are amongst the earliest representatives of procellariiform birds (albatrosses, tubenoses, and allies). Although several fossils of these birds have been reported in the past, many details of their osteology remained unknown. Here we describe a comprehensive collection of diomedeoidid fossils from the Rupelian stratotype in Belgium, which was found more than 100 years ago. The material includes all major limb elements as well as other cranial and postcranial bones, and allows the recognition of previously unknown features of phylogenetic significance. Based on these new osteological data, diomedeoidids were for the first time subjected to a phylogenetic analysis, which resulted in a position outside a clade including Hydrobatidae (northern storm‐petrels), Pelecanoididae (diving‐petrels), and Procellariidae (fulmars, petrels, shearwaters, and allies), either as the sister taxon of Diomedeidae (albatrosses) or as that of all crown group Procellariiformes. The latter placement is better supported by the osteological evidence, and diomedeoidids lack several apomorphies of crown group Procellariiformes. Previously unrecognized derived features are reported that support a monophyletic Hydrobatidae, thus contradicting recent proposals that Oceanitinae (southern storm‐petrels) are the earliest diverging crown group Procellariiformes. The new fossils also have a bearing on the convoluted taxonomy of diomedeoidids, and Diomedeoides Fischer, 1985 is synonymized with Rupelornis van Beneden, 1871. Diomedeoides lipsiensis (Fischer, 1983) is synonymous with Rupelornis definitus (van Beneden, 1871), a species that exhibits a large size range. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 854–875.  相似文献   

10.
    
The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle‐walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test‐case study. Both an orthograde body plan and orang‐like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape‐like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc.  相似文献   

11.
Morphological and biometrical analyses of the partial hand IPS18800 of the fossil great ape Hispanopithecus laietanus (=Dryopithecus laietanus), from the Late Miocene (about 9.5Ma) of Can Llobateres (Catalonia, Spain), reveal many similarities with extant orang-utans (Pongo). These similarities are interpreted as adaptations to below-branch suspensory behaviours, including arm-swinging and clambering/postural feeding on slender arboreal supports, due to an orang-like double-locking mechanism. This is confirmed by the long and highly curved phalanges of Hispanopithecus. The short and stout metacarpals with dorsally constricted heads, together with the dorsally extended articular facets on proximal phalanges, indicate the persistence of significant degrees of palmigrady. A powerful grasping capability is indicated by the great development of basal phalangeal tubercles, the marked insertions for the flexors on phalangeal shafts and the large pits for the collateral ligaments. The morphology of the Hispanopithecus long bones of the hand indicates a unique positional repertoire, combining orthogrady with suspensory behaviours and palmigrade quadrupedalism. The retention of powerful grasping and palmigrady suggests that the last common ancestor of hominids might have been more primitive than what can be inferred on the basis of extant taxa, suggesting that pronograde behaviours are compatible with an orthograde bodyplan suitable for climbing and suspension.  相似文献   

12.
    
  相似文献   

13.
    
The relative length proportions of the three bony elements of the pelvic (femur, tibiotarsus and tarsometatarsus) and pectoral (humerus, ulna and manus) limbs of the early Cretaceous bird Gansus yumenensis, a well‐represented basal ornithuromorph from China, are investigated and compared to those of extant taxa. Ternary plots show that the pectoral limb length proportions of Gansus are most similar to Apodiformes (swifts and hummingbirds), which plot away from all other extant birds. In contrast, the pelvic limb length proportions of Gansus fall within the extant bird cluster and show similarities with the neornithine families Podicipedidae (grebes), Diomedeidae (albatross) and Phalacrocoracidae (cormorants). Although it does have some of the pelvic limb features of grebes and cormorants, the femur of Gansus is more gracile and is thus more consistent with an albatross‐like shallow‐diving mode of life than a strong foot‐propelled diving movement pattern. The position of Gansus in pectoral limb ternary morphospace is largely due to its elongated manus. In contrast to apodiformes, where the humerus and ulna are short and robust, an adaptation, which provides a stiff wing for their demanding fast agile and hovering flight (respectively), the wing‐bones of Gansus are slender, indicating a less vigorous flapping flight style. The suite of characters exhibited by Gansus mean it is difficult to completely interpret its likely ecology. Nevertheless, our analyses suggest that it is probable that this bird was both volant and capable of diving to some degree using either foot‐propelled or, perhaps, both its wings and its feet for underwater locomotion.  相似文献   

14.
Birds are important pollinators, but the evolutionary history of ornithophily (bird pollination) is poorly known. Here, we report a skeleton of the avian taxon Pumiliornis from the middle Eocene of Messel in Germany with preserved stomach contents containing numerous pollen grains of an eudicotyledonous angiosperm. The skeletal morphology of Pumiliornis is in agreement with this bird having been a, presumably nectarivorous, flower-visitor. It represents the earliest and first direct fossil evidence of flower-visiting by birds and indicates a minimum age of 47 million years for the origin of bird–flower interactions. As Pumiliornis does not belong to any of the modern groups of flower-visiting birds, the origin of ornithophily in some angiosperm lineages may have predated that of their extant avian pollinators.  相似文献   

15.
The Phorusrhacidae, a group of large terrestrial carnivorous birds mostly known from the Cenozoic of South America, are often placed in a superfamily, for which the taxon name Phororhacoidea Patterson, 1941 is frequently used. However, according to the International Code of Zoological Nomenclature, Phororhacoidea is not valid. The proper taxon name at the superfamily level is Phorusrhacoidea Ameghino, 1889.  相似文献   

16.
    
We examined habitat use, morphology, jumping and clinging ability for 403 juvenile, female and male green anole lizards, Anolis carolinensis, in a population in south‐eastern Louisiana. We sought to answer three questions: (1) Do age/sex classes differ in habitat use, morphology and performance ability? (2) Do habitat use, morphology and performance correlate among all individuals across three age/sex classes (juveniles, females and males)? (3) Do juveniles compensate for their poor absolute performance capacities by being better performers on a relative scale? The three age/sex classes were found to differ significantly in size‐adjusted morphology, habitat use and size‐adjusted performance capacity. Juveniles tended to occupy perches which were closer together than those of adult males and females. The distal elements of the hindlimb (femur, tibia) were significantly longer in males than in females and juveniles, while females were more stocky than males and juveniles. The only significant overall ecomorphological relationship detected was between the lengths of the distal hindlimb elements and maximum jump acceleration. Our hypothesis that juveniles should be better performers (relative to size) compared to adults was disproved, as adult females were always the best performers relative to size. Our analysis of a mainland anole population presents a different view of population structure compared to similar studies involving Caribbean Anolis lizards, which show more ecological differentiation among age/sex classes, and also show that juveniles are relatively good performers. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 211–221.  相似文献   

17.
  总被引:1,自引:0,他引:1  
Some aspects of the paleoproductivity of meromictic Crawford Lake, near Toronto, are inferred from a study of its sedimentary pigments, and diatoms. Several stages of lake development are observed over the 35 cm-deep sediment core removed from the center of Crawford Lake. Evidence of changes in lake productivity during the last 300 years was reflected by significant stratigraphic sediment pigment changes which were associated with European settlement in the Crawford Lake watershed and recent alterations associated with the area's operation by the Conservation Authority (1969 — present). One of the most important factors correlated with paleoproductivity was land clearance (mainly logging of white oak and pine). Deforestation during the last century is correlated with an increase in the amount of algal pigments deposited in the lake's sediments during the 1800's. During the last 10 years a striking increase in the accumulation of chlorophyll derivatives was observed. This is correlated with a dramatic increase in the number of visitors to the lake.Stratigraphic changes in the ratio of cyanobacterial to phototrophic bacterial pigment accumulation are used to infer changes which occurred during the shift from mesotrophy to eutrophy in Crawford Lake.  相似文献   

18.
从鸟巢特征、巢址选择、窝卵数、育幼行为、雏鸟生长发育、繁殖生产力以及繁殖对策等方面,对青藏高原高寒草甸雀形目鸟类繁殖生态学进行了综合分析与评述。高寒草甸雀形目鸟类受适合繁殖季节长度、食物资源和捕食压力的影响,或选择逐步投资对策,或选择一次投资对策;每个种群的常见窝卵数就是最适窝卵数;雏鸟的发育模式相对固定,不存在补偿性生长,但是生长期长度是可变化的。①研究亲-子通讯行为的进化和稳定性,提出适应高寒草甸雀形目鸟类的亲-子间的通讯行为假设;②建立在巢环境特征变化梯度(开放到封闭)上的生命表,找出决定适合度的生命表参数(繁殖率和存活率)的因果关系;③测定在巢环境特征变化梯度上的生态领域变化将是未来研究的3个方向。  相似文献   

19.
2016和2017年,在广东鼎湖山国家级自然保护区及广东同乐大山省级自然保护区,用行为观察法和微型摄像机记录了淡眉雀鹛(Alcippehueti)、红嘴相思鸟(Leiothrixlutea)、栗颈凤鹛(Staphida torqueola)和褐顶雀鹛(Schoeniparus brunneus)等12种鸟类的繁殖习性。描述了它们的巢特征、卵重、卵大小、窝卵数及育雏等繁殖参数。研究发现:1)与历史数据相比,经过近30年的时间,在广东鼎湖山的淡眉雀鹛筑巢高度增加;2)与国内其他地区相比,红嘴相思鸟的筑巢高度也增加;3)发现乌鹃(Surniculus lugubris)和棕腹鹰鹃(Hierococcyx nisicolor)将淡眉雀鹛巢中的淡眉雀鹛雏鸟移出巢外;4)发现淡眉雀鹛亲鸟将其巢中的鸟卵和雏鸟移出巢外。  相似文献   

20.
    
We compared the osteology of the late Eocene to early Miocene penguin‐like Plotopteridae from the North Pacific Basin with that of Paleocene stem group representatives of the Sphenisciformes and identified previously unrecognized similarities and differences. New data on the osteology of plotopterids, like the shape of the caudal end of the mandible, support a position of plotopterids outside the Suloidea, the clade formed by Sulidae, Phalacrocoracidae, and Anhingidae. However, as assumed by previous authors, the diving adaptations of plotopterids and sphenisciforms are likely to have evolved independently, and the resemblances in different parts of the postcranial skeleton therefore constitute one of the more striking examples of parallelism among tetrapods. We note that close relatives of both plotopterids and penguins forage by plunge diving. Whereas underwater locomotion of diving birds with a swimming ancestor is usually driven by the feet, we hypothesize that plotopterids and other wing‐propelled divers are more likely to have had volant ancestors that initiated diving by shallow plunges into the sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号