首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remarkable increases in enzyme catalytic stability resulting from addition of charged water-soluble polymers have recently been reported, suggesting that use of these polymers may be an attractive general strategy for enzyme stabilization. To test the proposed hypothesis that coulombic forces between water-soluble polymers and enzymes are primarily responsible for enzyme stabilization, we examined the catalytic stability and activity of two enzymes in the presence of polymers differing in net charge. All polymers tested increased enzyme lifetimes, regardless of their net charge, suggesting that stabilization of these enzymes by water-soluble polymers is not solely dependent on simple electrostatic interactions between the polymers and enzymes.  相似文献   

2.
The preparation of fused materials using liposomes has been examined for several decades as a tool for the stabilization of heterogeneous enzymes. We investigated the liposomal encapsulation of lysosomal enzymes extracted from Saccharomyces cerevisiae. Liposomes were formed with L-α-phosphatidylcholine from egg yolk and cholesterol. To encapsulate whole lysosomal enzymes in liposomes made with and without cholesterol, L-α-phosphatidylcholine and cholesterol were added to chloroform at a ratio of 10:0 (L-α-phosphatidylcholine:cholesterol) and then evaporated for 10 min at 4°C. The residue after evaporation was mixed with lysosomal enzymes at the same ratio and then vortexed for 1 min and sonicated for 5 sec to encapsulate the enzymes. Liposome-encapsulated lysosomal enzymes were created using various amounts of lysosomal enzymes and cholesterol. The results indicated that the optimal encapsulation conditions were lipid:cholesterol ratios of 7:3 and 8:2. Liposome formation was confirmed by TEM imaging. After 1 day, two types of liposomes released small amounts of lysosomal enzymes. However, after 6 days, liposomes formed from mixtures of lipid and cholesterol did not exhibit any changes, whereas liposomes formed from only lipids released high amounts of lysosomal enzymes. Lysosomal enzymes encapsulated in liposomes have potential as important drug delivery carriers, as liposomes are able to control drug release and bioavailability.  相似文献   

3.
Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.  相似文献   

4.
《Fungal biology》2020,124(1):15-23
Metabolons are dynamic associations of enzymes catalyzing consecutive reactions within a given pathway. Association results in enzyme stabilization and increased metabolic efficiency. Metabolons may use cytoskeletal elements, membranes and membrane proteins as scaffolds. The effects of glucose withdrawal on a putative glycolytic metabolon/F-actin system were evaluated in three Saccharomyces cerevisiae strains: a WT and two different obligate fermentative (OxPhos-deficient) strains, which obtained most ATP from glycolysis. Carbon source withdrawal led to inhibition of fermentation, decrease in ATP concentration and dissociation of glycolytic enzymes from F-actin. Depending on the strain, inactivation/reactivation transitions of fermentation took place in seconds. In addition, when ATP was very low, green fluorescent protein-labeled F-actin reorganized from highly dynamic patches to large, non-motile actin bodies containing proteins and enzymes. Glucose addition restored fermentation and cytoskeleton dynamics, suggesting that in addition to ATP concentration, at least in one of the tested strains, metabolon assembly/disassembly is a factor in the control of the rate of fermentation.  相似文献   

5.
Abstract

Enzymes are one of the foundations and regulators for all major biological activities in living bodies. Hence, enormous efforts have been made for enhancing the efficiency of enzymes under different conditions. The use of nanomaterials as novel carriers for enzyme delivery and regulating the activities of enzymes has stimulated significant interests in the field of nano-biotechnology for biomedical applications. Since, all types of nanoparticles (NPs) offer large surface to volume ratios, the use of NPs as enzyme carriers affect the structure, performance, loading efficiency, and the reaction kinetics of enzymes. Hence, the immobilization of enzymes on nanomatrices can be used as a useful approach for direct delivery of therapeutic enzymes to the targeted sites. In other words, NPs can be used as advanced enzyme delivery nanocarriers. In this paper, we present an overview of different binding of enzymes to the nanomaterials as well as different types of nanomatrix supports for immobilization of enzymes. Afterwards, the enzyme immobilization on nanomaterials as a potential system for enzyme delivery has been discussed. Finally, the challenges associated with the enzyme delivery using nano matrices and their future perspective have been discussed.

Communicated by Ramasamy H. Sarma  相似文献   

6.
The molecular mechanisms of change in the thermal stability of proteins modified with low molecular weight reagents are discussed. The choice of stabilization mechanisms to be used as a general strategy for increasing enzyme stability by chemical modification is addressed. Hydrophilization of nonpolar surface areas is the most simple and reliable approach to artificial stabilization of enzymes for use in applied biochemistry and biotechnology.  相似文献   

7.
Mechanisms of stabilization and compensation, that occur in biochemical systems with enzymes modified by harmful mutations are considered. The compensation of such mutations can result in their evolutionary neutralism. The stabilization is considered due to kinetic signals of metabolites which form the direct and feedback connections with enzymes (temporal stabilization), and also the compensation in enzymatic aggregates determined by the changes of conformation (spatial stabilization). Examples of the stabilization in one or several steady states of enzymatic systems are presented. The neutralism of the distortion of inhibitory and catalytic properties of enzymes is shown in the region of stabilization of these properties.  相似文献   

8.
The moderate stability of enzymes is one of the main drawbacks that hinder general implementation of these interesting biocatalysts at industrial scale. An especially complex problem is the stabilization of multimeric proteins, where dissociation of the subunits produces enzyme inactivation and even product contamination. In this review, different strategies to stabilize multimeric enzymes at different levels are revised. First, the use of proper experimental conditions may facilitate the handling of the enzymes (ions, polymers, etc.). Second, genetic tools may be used to crosslink (via disulfide bonds) or just to reinforce the subunit–subunit interactions. The physical or chemical crosslinking of the enzyme subunits will be also discussed. Finally, the use of immobilization strategies (with or without pre-existing supports) will be discussed. Special emphasis will be put on the new immobilization strategies specifically designed to involve the maximum amount of enzyme subunits in the immobilization (and thus, in the further multipoint covalent attachment).  相似文献   

9.
Investigations of the addition of enzymes to traditional feed-mixtures, for improvement of feed utilization and of growth of domestic animals, have been performed. A survey of the literature on the effects of enzyme addition is shown in tabular form.Experiments with rats fed on barley diets, with and without enzyme addition, showed no significant difference between the diets, but a tendency towards feed improvements by the addition of some of the enzymes, e.g., amylase, cellulase and protease. Some of the experiments with chickens fed on a barley-based diet, with the addition of either cellulase and/or pectinase or protease, showed increases in growth of up to 7% (P < 0.05), and improvements in feed utilization of 6% (P < 0.01). In one experiment on chickens fed on a barley of better quality than that in the above-mentioned experiments, no improvements were found by adding an enzyme mixture, consisting of cellulase, pectinase and protease, to the feed.The results thus suggest that a better feed-utilization by use of enzyme addition is obtainable only if the feed mixture is composed of less-digestible feed ingredients. The amount of added enzymes strongly influences the price of the resultant feed, and in the experiments showing feed improvement, the break-even price of the enzymes is less than 26 Dkr/kg enzyme. The use of enzymes for making slowly digested and less-expensive products (waste products) applicable as feed components will be examined in future work  相似文献   

10.
The preservation of activity of extracellular enzymes in soil is presently associated with their immobilization on organic or inorganic carriers. Enzyme immobilization results, however, in a significant decrease in enzymatic activity. In the present work, the mechanism responsible for promotion of the catalytic activity was revealed, as well as the favorable effect of low-molecular alkylhydrozybenzenes of the class of alkylresorcinols, which are common in soil organic matter, on stability of immobilized enzymes (exemplified by amylases) by their post-translational modification. Optimal conditions (enzyme to sorbent ratio, pH optimum, CaCl2 concentration, and sorption time) for amylase sorption on a biological sorbent (yeast cell walls) were determined and decreased activity of the immobilized enzyme compared to its dissolved state was confirmed. Alkylresorcinols (C7AHB) at concentrations of 1.6 to 80 mM were found to cause an increase of amylase activity both in the case of already sorbed enzymes (by 30%) and in the case of a free dissolved enzyme with its subsequent immobilization (by 50–60%). In both cases, the optimal C7AHB concentration was 16 mM. Amylase stability was determined for C7AHB-modified and unmodified enzymes immobilized on the biological sorbent after two cycles of freezing (–20°C) and thawing (4°C). Inverse dependence was revealed between increasing stability of C7AHB-modified enzymes and an increase in their activity, as well as higher stability of immobilized modified amylases than of the dissolved modified enzyme. Investigation of the effect of C7HOB-modification in the preservation of activity in immobilized amylases after four freeze–thaw cycles revealed: (1) better preservation of activity by the modified immobilized enzymes compared to immobilized ones; (2) differences in the dynamics of activity loss within compared pairs, with activity of immobilized amylases decreasing after the second cycle to a lower level (42%) than activity of the modified immobilized enzymes after the fourth cycle (48%). These results demonstrate that in the preservation of activity of extracellular enzymes in soil both stabilization mechanisms are of importance: immobilization on organic carriers and modification of the enzyme conformation by low-molecular compounds with the functions of chemical chaperones.  相似文献   

11.
Using the data from daughters of known carriers and from age-paired controls, we present a method for estimating the mean and variance of creatine kinase (CK) and pyruvate kinase (PK) in pre-menarchal and early adolescent Duchenne muscular dystrophy (DMD) carriers. CK and PK means and variances were estimated for different age ranges; it is shown that among DMD carriers the levels of both enzymes decrease linearly with age. A discriminant analysis was further performed for the estimation of biochemical risks favouring the diagnosis of heterozygosity for possible young carriers. The use of this method may also be applicable for other X-linked conditions in which the detection of heterozygotes is probabilistic.  相似文献   

12.
We present how whole cells can be used in different ways to stabilize enzyme catalysts in the cell environment to perform biotransformations. Some of the factors which affect their use in biotransformations, such as the nature of the substrate/product, the reusability of cells, the extension of cell viability by cell activation periods or the addition of energetic substrates and the stabilization in solids supports, are considered. The use of sufficiently active enzymes in the cell environment to perform biotransformations within growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., can be used to produce l-carnitine from crotonobetaine or d-carnitine substrate, are analyzed.  相似文献   

13.
Enzymes are efficient catalysts designed by nature to work in physiological environments of living systems. The best operational conditions to access and convert substrates at the industrial level are different from nature and normally extreme. Strategies to isolate enzymes from extremophiles can redefine new operational conditions, however not always solving all industrial requirements. The stability of enzymes is therefore a key issue on the implementation of the catalysts in industrial processes which require the use of extreme environments that can undergo enzyme instability. Strategies for enzyme stabilization have been exhaustively reviewed, however they lack a practical approach. This review intends to compile and describe the most used approaches for enzyme stabilization highlighting case studies in a practical point of view.  相似文献   

14.
A variety of polymers with amino pendant groups have been accepted as suitable enzyme carriers. A number of synthesis strategies and techniques are adopted to anchor enzymes. The polymers are activated through derivatization either prior to or during adsorption to facilitate the covalent binding of enzyme. Polyethyleneimine (PEI), with the highest concentration of amino groups, has found acceptance as a carrier in a number of industrial immobilized biosystems. The two forms of PEI known are the linear crystalline type and the more important amorphous branched structure with a distribution of primary, secondary, and tertiary amino groups in the ratio 1:2:1. The primary and secondary amino groups are conveniently modified to generate facile enzyme carriers. A number of patents have been filed on the use of PEI to bind a rich variety of enzymes and whole cells. This review is primarily a compilation of these reports and purports to highlight the potential of PEI.  相似文献   

15.

The moving bed biofilm reactor (MBBR), operated as a post carbon removal system, requires long start-up times in comparison to carbon removal systems due to slow growing autotrophic organisms. This study investigates the use of carriers seeded in a carbon rich treatment system prior to inoculation in a nitrifying MBBR system to promote the rapid development of nitrifying biofilm in an MBBR system at temperatures between 6 and 8 °C. Results show that nitrification was initiated by the carbon removal carriers after 22 h of operation. High throughput 16S-rDNA sequencing indicates that the sloughing period was a result of heterotrophic organism detachment and the recovery and stabilization period included a growth of Nitrosomonas and Nitrospira as the dominant ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) in the biofilm. Peripheral microorganisms such as Myxococcales, a rapid EPS producer, appear to have contributed to the recovery and stabilization of the biofilm.

  相似文献   

16.
An effective approach to the stabilization of hydrolytic enzymes (alkaline proteinase and cellulases) via the complex formation with chitosan for their further use as detergent components has been developed. Interaction with chitosan results in a 35–50% increase in the level of catalytic activity of the enzymes after incubation for 60 min under the conditions of detergent use (alkaline pH, increased temperature, the presence of anionic surfactants) as compared to the system in the absence of chitosan both due to the enzyme stabilization and the increase of the starting level of catalytic activity. A twofold decrease of the enzyme inactivation constant is observed under the aforementioned conditions in the case of alkaline proteinase. In the case of cellulase preparation, the method for the control of the concentration of the active enzyme in the system modeling synthetic detergents has been suggested. The method is based on the enzymatic destruction of the stabilizing agent, chitosan, by enzymes of the cellulase complex. The destruction of chitosan removed the stabilizing effect, thus resulting in the inactivation of cellulases. The developed approaches allow for the widening of the field of the possible application of enzymes as detergent components.  相似文献   

17.
Cellulose beads prepared in this report have high porosity (75-80%) and evenly distributed pores. The pore size is about 1000 A. The cellulose beads are physically strong and contain large amounts of reactive groups, making them suitable for use as carriers for immobilized enzymes.  相似文献   

18.
Protein-stabilizing characteristics of sixteen proteins during freeze-thawing and freeze-drying were investigated. Five enzymes, each with different instabilities against freezing and dehydration, were employed as the protein to be stabilized. Proteinaceous additives generally resulted in greater enzyme stabilization during freeze-thawing than sugars while the degree of stabilization for basic lysozyme and protamine were inferior to that of neutral and acidic proteins. Freeze-drying-induced inactivation of enzyme was also reduced by the presence of a proteinaceous additive, the extent of which was lower than that for a sugar. In both freeze thawing and freeze drying, the enzymes stabilization by the proteinaceous additive increased with increasing additive concentration. The enhancement of enzyme inactivation caused by pH change was also reduced in the presence of proteinaceous additives. The combined use of a sugar such as sucrose and dextran tended to increase the stabilizing effect of the proteinaceous additive.  相似文献   

19.
The future of hydrogen as fuel strongly depends on the possibility to produce it in an economic and clean way. Hydrogen can be produced from carbohydrates and water under mild conditions by means of a multistep synthetic pathway (13 enzymes) with very high yield. Crossover inhibitions and different optimal conditions of involved enzymes hinder the use of one‐pot approach. Immobilization of enzymes in coupled individual reactors may avoid this problem. This work deals with the immobilization in silica‐based hydrogels of one key enzyme of this pathway: glucose 6‐phosphate dehydrogenase from Leuconostoc mesenteroides. The carriers were prepared with an ethylene glycol‐modified silane, two polymers (polyethylene oxide and Pluronic®) and amino groups created by 3‐aminopropyltriethoxysilane. These parameters influenced the enzymatic activity after immobilization. Gels prepared by addition of polyethylene oxide gave the best results and were used as monoliths in microreactors with two different geometries. The systems showed a high operational stability but a low effective enzyme activity. Enzyme leaching and a nonideal flow pattern may account for the low activity observed. This work is possibly the first one dealing with the immobilization of glucose 6‐phosphate dehydrogenase in silica‐based gels for its application in flow‐through microreactors.  相似文献   

20.
High pressure enhancement of enzymes: A review   总被引:1,自引:0,他引:1  
While most current applications of high pressure (HP) are for inactivating deleterious enzymes, there is evidence that high pressure can induce stabilization and activation of some enzymes. Various other strategies have been employed to enhance enzyme stability, including; genetic engineering, immobilization, and operating in non-aqueous media. While each of these strategies has provided varying degrees of stability or activity enhancement, the application of high pressure may be a complementary, synergistic, or an additive enzyme enhancement technique. Over 25 enzymes that have exhibited high pressure stabilization and/or activation were compiled. Each enzyme discussed responds differently to high pressure depending on the pressure range, temperature, source, solvent or media, and substrate. Possible mechanisms for pressure-induced stabilization and activation are discussed and compared with current enzyme enhancement techniques. The compiled evidence of high pressure enzyme enhancement in this review indicates that pressure is an effective reaction parameter with potential for greater utilization in enzyme catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号