首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interspecific competition for shared resources should select for evolutionary divergence in resource use between competing species, termed character displacement. Many purported examples of character displacement exist, but few completely rule out alternative explanations. We reared genetically diverse populations of two species of bean beetles, Callosobruchus maculatus and Callosobruchus chinensis, in allopatry and sympatry on a mixture of adzuki beans and lentils, and assayed oviposition preference and other phenotypic traits after four, eight, and twelve generations of (co)evolution. C. maculatus specializes on adzuki beans; the generalist C. chinensis uses both beans. C. chinensis growing in allopatry emerged equally from both bean species. In sympatry, the two species competing strongly and coexisted via strong realized resource partitioning, with C. chinensis emerging almost exclusively from lentils and C. maculatus emerging almost exclusively from adzuki beans. However, oviposition preferences, larval survival traits, and larval development rates in both beetle species did not vary consistently between allopatric versus sympatric treatments. Rather, traits evolved in treatment‐independent fashion, with several traits exhibiting reversals in their evolutionary trajectories. For example, C. chinensis initially evolved a slower egg‐to‐adult development rate on adzuki beans in both allopatry and sympatry, then subsequently evolved back toward the faster ancestral development rate. Lack of character displacement is consistent with a previous similar experiment in bean beetles and may reflect lack of evolutionary trade‐offs in resource use. However, evolutionary reversals were unexpected and remain unexplained. Together with other empirical and theoretical work, our results illustrate the stringency of the conditions for character displacement.  相似文献   

3.
Necturus beyeri (Caudata: Proteidae), as conceived by some, contains paedomorphic salamanders distributed from the Ochlockonee drainage of Florida to the Angelina drainage of Texas. Because these salamanders differ in color pattern and karyotype across their geographic range, we performed a phylogeographic analysis that included representatives from all major drainages as well as of all congeners. The mitochondrially encoded ND2 gene was used to infer phylogenetic relationships using Bayesian inference. Morphometrics of head shape were analyzed and included as an independent data set. Our work suggests that Necturus comprises 11 lineages. A basal split within the genus separates an ancestor of two Atlantic Coastal Plain species (Necturus lewisi and Necturus punctatus) from the ancestor of nine distinct Gulf Coastal Plain lineages. One lineage is consistent with Necturus alabamensis, a species currently recognized in the Black Warrior drainage of Alabama. Two lineages comprise Necturus maculosus, as historically recognized, and six lineages comprise N. beyeri, as recognized by some, each of which occupies a unique drainage. Both of these species are demonstrated to be paraphyletic. Head morphometrics show the same patterns as the mtDNA. Overall, lineages within Necturus exhibit an east‐to‐west progression of appearance on the phylogenetic trees. This pattern corroborates biogeographic hypotheses based on previous karyological work. Within N. beyeri, this progression separates a pattern class of two eastern lineages lacking bold spotting and possessing relatively small mean body lengths from a pattern class of four western lineages possessing bold spotting and larger mean body sizes. Thus, the two eastern lineages of N. beyeri are similar in color pattern and body size to N. punctatus either through retention of the ancestral color pattern and size for the genus or through convergent selection in eastern streams of the Gulf Coastal Plain.  相似文献   

4.
Aedes aegypti, the major vector of dengue, yellow fever, chikungunya, and Zika viruses, remains of great medical and public health concern. There is little doubt that the ancestral home of the species is Africa. This mosquito invaded the New World 400‐500 years ago and later, Asia. However, little is known about the genetic structure and history of Ae. aegypti across Africa, as well as the possible origin(s) of the New World invasion. Here, we use ~17,000 genome‐wide single nucleotide polymorphisms (SNPs) to characterize a heretofore undocumented complex picture of this mosquito across its ancestral range in Africa. We find signatures of human‐assisted migrations, connectivity across long distances in sylvan populations, and of local admixture between domestic and sylvan populations. Finally, through a phylogenetic analysis combined with the genetic structure analyses, we suggest West Africa and especially Angola as the source of the New World's invasion, a scenario that fits well with the historic record of 16th‐century slave trade between Africa and Americas.  相似文献   

5.
Phylogenetic relationships in Daltoniaceae (~200 species in 14 genera) are inferred from nucleotide sequences from five genes, representing all genomic compartments, using parsimony, likelihood and Bayesian methods. Alternative classifications for Daltoniaceae have favoured traits from either sporophytes or gametophytes; phylogenetic transitions in gametophytic leaf limbidia and sporophytic exostome ornamentation were evaluated using ancestral state reconstruction to assess the levels of conflict between these generations. Elimbate leaves and the cross‐striate exostome are reconstructed as plesiomorphic states. Limbate leaves and papillose exostomes evolved at least two and six times, respectively, without reversals. The evolution of leaf limbidia is relatively conserved, but exostome ornamentation is highly homoplasious, indicating that superficial similarity in peristomes gives unreliable approximations of phylogenetic relatedness. Our phylogenetic analyses show that Achrophyllum and Calyptrochaeta are reciprocally monophyletic. Within core Daltoniaceae, relationships among taxa with elimbate leaves are generally well understood. However, taxa with limbate leaves form a monophyletic group, but resolved subclades correspond to biogeographical entities, rather than to traditional concepts of genera. Daltonia (~21 species), Distichophyllum (~100 species) and Leskeodon (~20 species) are polyphyletic. Seven nomenclatural changes are proposed here. As the current taxonomy of Daltoniaceae lacks phylogenetic consistency, critical generic revisions are needed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

6.
7.
Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non‐Brownian models, missing data, and within‐species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time‐consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000‐species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within‐species variation, non‐Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time‐consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation‐Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars functions anc.recon and phylopars.  相似文献   

8.
9.
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.  相似文献   

10.
11.
Previous molecular assessments of the red algal order Rhodymeniales have confirmed its monophyly and distinguished the six currently recognized families (viz. Champiaceae, Faucheaceae, Fryeellaceae, Hymenocladiaceae, Lomentariaceae, and Rhodymeniaceae); however, relationships among most of these families have remained unresolved possibly as a result of substitution saturation at deeper phylogenetic nodes. The objective of the current study was to improve rhodymenialean systematics by increasing taxonomic representation and using a more robust multigene dataset of mitochondrial (COB, COI/COI‐5P), nuclear (LSU, EF2) and plastid markers (psbA, rbcL). Additionally, we aimed to prevent phylogenetic inference problems associated with substitution saturation (particularly at the interfamilial nodes) by removing fast‐evolving sites and analyzing a series of progressively more conservative alignments. The Rhodymeniales was resolved as two major lineages: (i) the Fryeellaceae as sister to the Faucheaceae and Lomentariaceae; and (ii) the Rhodymeniaceae allied to the Champiaceae and Hymenocladiaceae. Support at the interfamilial nodes was highest when 20% of variable sites were removed. Inclusion of Binghamiopsis, Chamaebotrys, and Minium, which were absent in previous phylogenetic investigations, established their phylogenetic affinities while assessment of two genera consistently polyphyletic in phylogenetic analyses, Erythrymenia and Lomentaria, resulted in the proposition of the novel genera Perbella and Fushitsunagia. The taxonomic position of Drouetia was reinvestigated with re‐examination of holotype material of D. coalescens to clarify tetrasporangial development in this genus. In addition, we added three novel Australian species to Drouetia as a result of ongoing DNA barcoding assessments—D. aggregata sp. nov., D. scutellata sp. nov., and D. viridescens sp. nov.  相似文献   

12.
The white‐lipped tree viper (Trimeresurus albolabris) is one of the most common venomous snakes with medicine importance in South East Asia. To explore the genetic diversity, population structure and evolutionary history of Trimeresurus albolabris, we collected 98 samples from 27 localities covering its entire distribution. Two mitochondrial gene fragments (cyt‐b and ND‐4) and two nuclear genes (RAG‐1 and NT‐3) were sequenced and analysed. Bayesian inference and maximum‐likelihood methods were employed to reconstruct the phylogenetic relationships among populations based on the two mitochondrial fragments, and the median‐joining networks were depicted using nuclear genes. Divergence date and ancestral area were estimated, and the population demographic history was inferred. Both phylogenetic analyses consistently uncovered that Trimeresurus albolabris was monophyletics, with five geographically structured lineages. Divergence date and ancestral area estimation indicated that T. albolabris originated in northern Thailand and eastern Myanmar at c. 7.15 Ma. Population dynamics analyses showed the southern China lineage has experienced population expansion and contraction, but the others have not. Both the interglacial expansion and the highly heterogeneous habitats resulting from the uplift of the Plateau played a joint role in shaping the present distribution and population structure. The evolutionary history of T. albolabris can be explained by a pattern of two direction dispersal: first from North to South, and then from West to East.  相似文献   

13.
Spirogyra filaments show unique photomovement that differs in response to blue, red, and far‐red light. Phototropins involved in the blue‐light movement have been characterized together with downstream signaling components, but the photoreceptors and mechanical effectors of red‐ and far‐red light movement are not yet characterized. The filaments of Spirogyra varians slowly bent and aggregated to form a tangled mass in red light. In far‐red light, the filaments unbent, stretched rapidly, and separated from each other. Mannitol and/or sorbitol treatment significantly inhibited this far‐red light movement suggesting that turgor pressure is the driving force of this movement. The bending and aggregating movements of filaments in red light were not affected by osmotic change. Three phytochrome homologues isolated from S. varians showed unique phylogenetic characteristics. Two canonical phytochromes, named SvPHY1 and SvPHY2, and a noncanonical phytochrome named SvPHYX2. SvPHY1 is the first PHY1 family phytochrome reported in zygnematalean algae. The gene involved in the transport of phytochromes into the nucleus was characterized, and its expression in response to red and far‐red light was measured using quantitative PCR. Our results suggest that the phytochromes and the genes involved in the transport system into the nucleus are well conserved in S. varians.  相似文献   

14.
The phylogenetic relationships between western Palaearctic Zamenis and Rhinechis ratsnakes have been troubled, with recent estimates based on the supermatrix approach questioning their monophyly and providing contradictory results. In this study, we generated a comprehensive molecular data set for Zamenis and closely related ratsnakes to assess their phylogenetic and systematic relationships and infer their spatial and temporal modes of diversification. We obtained a fully resolved and well‐supported phylogeny, which is consistent across markers, taxon‐sets and phylogenetic methods. The close phylogenetic relationship between Rhinechis and Zamenis is well‐established. However, the early branching pattern within this clade, and the position of R. scalaris and Z. hohenackeri, remains poorly supported. The Persian ratsnake Z. persicus is sister to the Mediterranean species Z. situla, Z. longissimus and Z. lineatus, of which Z. situla is sister to a clade containing the latter two species. These results are consistent with a recent phylogenomic study on ratsnakes based on hundreds of loci. Whereas, topological tests based on our data and evidence from such phylogenomic study strongly rejected previous phylogenetic estimates based on the supermatrix approach and demonstrate that these “mega‐phylogenies”, with hundreds of taxa and high levels of missing data, have recovered inconsistent relationships with spurious nodal support. Biogeographical and molecular dating analyses suggest an origin of the ancestor of Rhinechis and Zamenis in the Aegean region with early cladogenesis during the Late Miocene associated with the Aegean arch formation and support a scenario of east‐to‐west diversification. Finally, while we have little morphological and phylogenetic evidence for the distinctiveness between Rhinechis and Zamenis, a classification of them in a single genus, and the designation of Zamenis scalaris (Schinz, 1822), reflects better their evolutionary relationships.  相似文献   

15.
Myriophyllum, among the most species‐rich genera of aquatic angiosperms with ca. 68 species, is an extensively distributed hydrophyte lineage in the cosmopolitan family Haloragaceae. The chloroplast (cp) genome is useful in the study of genetic evolution, phylogenetic analysis, and molecular dating of controversial taxa. Here, we sequenced and assembled the whole chloroplast genome of Myriophyllum spicatum L. and compared it to other species in the order Saxifragales. The complete chloroplast genome sequence of M. spicatum is 158,858 bp long and displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) region from the small single copy (SSC) region. Based on sequence identification and the phylogenetic analysis, a 4‐kb phylogenetically informative inversion between trnE‐trnC in Myriophyllum was determined, and we have placed this inversion on a lineage specific to Myriophyllum and its close relatives. The divergence time estimation suggested that the trnE‐trnC inversion possibly occurred between the upper Cretaceous (72.54 MYA) and middle Eocene (47.28 MYA) before the divergence of Myriophyllum from its most recent common ancestor. The unique 4‐kb inversion might be caused by an occurrence of nonrandom recombination associated with climate changes around the K‐Pg boundary, making it interesting for future evolutionary investigations.  相似文献   

16.
We used molecular characters to infer the phylogenetic position of the Western Mediterranean bushcricket genus Odontura and to trace its high karyotype diversity. Analysis of 1391 base pairs of two mitochondrial genes (COI and ND1) and one nuclear sequence (ITS2) was conducted. Phylogenetic topologies were estimated using maximum parsimony, maximum likelihood and likelihood‐based Bayesian inference. The genus Odontura is a phylogenetic outlier in respect of all other European Phaneropterinae genera and has been proposed to have originated from a hitherto unknown ancestor. Our results support the monophyly of the genus Odontura and the recognition of two subgenera: Odontura and Odonturella. We found that both Sicilian taxa of the subgenus Odontura have a completely identical morphology and song patterns. Combining these results, we proposed that both should be treated as subspecies: O. (Odontura) stenoxypha stenoxypha and O. (O.) st. arcuata. Bioacoustic data also proved to support independent markers, with song characteristics reflecting the molecular topology. Mapping the karyotypic characters onto the phylogenetic tree allows a reconstruction of the directions and transitional stages of chromosome differentiation. The number of autosomes within the genus Odontura ranges from 26 to 30. In addition to the ancestral X0 sex determination mechanism, neo‐XY and neo‐X1X2Y sex chromosomes have evolved independently.  相似文献   

17.
Recently, molecular analyses revealed that African and Eurasian golden jackals are distinct species. This finding suggests re‐investigation of the phylogenetic relationships and taxonomy of other African members of the Canidae. Here, we provide a study on the phylogenetic relationship between populations of African jackals Lupulella mesomelas and L. adusta inferred from 962 bp of the mitochondrial cytochrome b (cytb) gene. As expected from its disjunct distribution, with one population in eastern Africa and the other one in southern Africa, we found two mitochondrial lineages within L. mesomelas, which diverged about 2.5 million years ago (Ma). In contrast, in L. adusta with its more continuous distribution in sub‐Saharan Africa, we found only a shallower genetic diversification, with the exception of the West African population, which diverged around 1.4 Ma from the Central and East African populations. Both divergence ages are older than, for example the 1.1–0.9 million years between the grey wolf Canis lupus and the African golden wolf C. lupaster. One taxonomic implication of our findings might be that the two L. mesomelas populations warrant species status. However, genome‐wide data with adequate geographical sampling are needed to substantiate our results.  相似文献   

18.
Thespesia consists of 16 species of trees and shrubs from Southeast Asia–Oceania, Africa and America, the most well known being T. populnea, a small tree of tropical coastal areas around the world. Phylogenetic relationships in the genus and among its allies in tribe Gossypieae were inferred using three plastid and two nuclear regions to ascertain its generic delimitation and explore its biogeographical history. Maximum‐likelihood and Bayesian analyses confirmed that Thespesia is not monophyletic and, based on these results, Azanza is reinstated to accommodate the two species previously placed in Thespesia section Lampas. Dating analyses and ancestral range estimation indicated that Thespesia s.s. most likely originated in Southeast Asia–Oceania c. 30 Mya, but extant species did not begin to differentiate until the late Miocene. Two dispersal events, one into Africa c. 11 Mya and another into America (Antilles) c. 9 Mya, gave rise to the African and the Greater Antillean endemics, respectively. The two most widespread hydrochorous species, T. populnea and T. populneoides, originated in Southeast Asia–Oceania from where they spread to other parts of the world. Our analysis also indicated a much earlier origin than previously reported for the eumalvoid clade and its tribes Gossypieae, Malveae and Hibisceae suggesting that vicariance might have had an important role early in the history of these groups.  相似文献   

19.
The monophyly of the Sceloporus variabilis group is well established with five species and two species complexes, but phylogenetic relationships within species complexes are still uncertain. We studied 278 specimens in 20 terminals to sample all taxa in the “variabilis group,” including three subspecies in the “variabilis complex,” and two outgroups (Sceloporus grammicus and Sceloporus megalepidurus). We assembled an extensive morphological data set with discrete and continuous characters (distances and scale counts), including geometric morphometric data (landmark coordinates of three shapes), and a three‐marker molecular data set as well (ND4, 12S and RAG1). We conducted parsimony and Bayesian phylogenetic inferences on these data, including several partitioning and weighting schemes. We suggest elevating three subspecies to full species status. Therefore, we recommend recognition of nine species in the “variabilis group.” First, S. variabilis is sister to Sceloporus teapensis. In turn, Sceloporus cozumelae is sister to Sceloporus olloporus. These four species are a monophyletic group, which is sister to Sceloporus smithi. Finally, Sceloporus marmoratus is sister of the clade of five species. The other species in the “variabilis group” (Sceloporus chrysostictus, Sceloporus couchii and Sceloporus parvus) are a paraphyletic grade at the base of the tree. Our analyses reject the existence of the “variabilis complex.” We conducted a parsimony‐based ancestral reconstruction on body size (snout–vent length), femoral pores and dorsal scales and related morphological changes to geographic distribution of the species. Our phylogenetic hypothesis will allow best designs of comparative studies with species in the “variabilis group,” one of the earliest divergent lineages in the genus.  相似文献   

20.
Tribe Vernonieae are well represented in Brazil, mainly by subtribe Lychnophorinae comprising mostly perennial plants that inhabit arid lands, where species have developed a number of adaptations with recognized ecological protective functions, including secondary metabolite diversification. Recent phylogenetic studies indicate that the subtribe is monophyletic, but questions regarding lineage relationships have yet to be resolved. Phytochemical investigations have also been conducted recently and provide information on the secondary metabolite chemistry of Lychnophorinae. Chemotaxonomic studies have also been carried out. However, these phytochemical investigations are fragmentary and non‐standardized. Therefore, in this study, 15 species representing the major lineages of the subtribe were selected for phytochemical investigation and reconstruction of the ancestral states of their secondary metabolites. The main secondary metabolites of these species were detected by UHPLC‐UV‐MS in different types of extract, showing the presence of trans‐cinnamic acid derivatives, flavonoids, polyacetylenes and sesquiterpene lactones. The ancestral states of these secondary metabolites were reconstructed by parsimony and indicate the occurrence of 12 putative chemical synapomorphies. In this study, we present for the first time phytochemical and evolutionary studies based on the reconstruction of the ancestral chemical character states on a phylogenetic tree of Lychnophorinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号