首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fungus with protease and chitinase activities was isolated from the soil. It has been identified as Aspergillus fumigatus Fresenius TKU003. A. fumigatus TKU003 produced proteases and chitinases when it was grown in a medium containing shrimp and crab shell powder (SCSP) of marine waste. An extracellular protease was purified from the culture supernatant of A. fumigatus TKU003. The molecular weight of TKU003 protease was 124 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The pI for TKU003 protease was 8.3. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU003 protease was pH 8, 40 °C, 6–10, and 50 °C, respectively. The activity of the enzyme was strongly inhibited by PMSF. TKU003 serine protease, same as most other serine proteases of A. fumigatus, belongs to protease with alkaline pI. The unique characteristics of TKU003 protease is its high molecular weight.  相似文献   

2.
A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions.  相似文献   

3.
Alkaline protease is a class of important hydrolytic enzymes having wide applications in bioprocess industries. Their optimum pH in the alkaline range and stability at higher temperatures make them ideal in detergent and leather processing industries. These enzymes have excellent depilating capacity. The present study aims at process optimization for the production of alkaline protease from Bacillus amyloliquefaciens ATCC 23844. Information on the optimal operating temperature and pH were elicited from specific growth rates and alkaline protease yields. It was also observed that besides pH and temperature, the oxygen transfer rate is another important limiting variable for the production of protease. Volumetric oxygen transfer coefficient (k L a) was estimated at various impeller speeds and aeration rates. The optimal impeller speed and aeration rates were determined from k L a and the relative protease yield data. It was understood that the oxygen transfer rate is one of the crucial parameters for the production of proteolytic enzymes by B. amyloliquefaciens.  相似文献   

4.
Monascus purpureus CCRC31499 produced a protease when it was grown in a medium containing shrimp and crab shell powder (SCSP) of marine wastes. An extracellular protease was purified from the culture supernatant to homology. The protease had a molecular weight of 40,000 and a pI of 7.9. The optimal pH, optimum temperature, pH stability, and thermal stability of the protease were pH 7–9, 40 °C, pH 5–9, and 40 °C, respectively. In addition to protease activity, CCRC31499 also exhibited activity of enhancing vegetable growth in culture supernatant. This is also the first report of isolation of a protease from Monascus species.  相似文献   

5.
The effect of gastrointestinal mucus on protease activity in Vibrio anguillarum was investigated. Protease activity was measured by using an azocasein hydrolysis assay. Cells grown to stationary phase in mucus (200 μg of mucus protein/ml) exhibited ninefold-greater protease activity than cells grown in Luria-Bertani broth plus 2% NaCl (LB20). Protease induction was examined with cells grown in LB20 and resuspended in mucus, LB20, nine-salts solution (NSS [a carbon-, nitrogen-, and phosphorus-free salt solution]), or marine minimal medium (3M) (~109 CFU/ml). Induction of protease activity occurred 60 to 90 min after addition of mucus and was ≥70-fold greater than protease activity measured in cells incubated in either LB20 or 3M. Mucus was fractionated into aqueous and chloroform-methanol-soluble fractions. The aqueous fraction supported growth of V. anguillarum cells, but did not induce protease activity. The chloroform-methanol-soluble fraction did not support growth, nor did it induce protease activity. When the two fractions were mixed, protease activity was induced. The chloroform-methanol-soluble fraction did not induce protease activity in cells growing in LB20. EDTA (50 mM) inhibited the protease induced by mucus. Upon addition of divalent cations, Mg2+ (100 mM) was more effective than equimolar amounts of either Ca2+ or Zn2+ in restoring activity, suggesting that the mucus-inducible protease was a magnesium-dependent metalloprotease. An empA mutant strain of V. anguillarum did not exhibit protease activity after exposure to mucus, but did grow in mucus. Southern analysis and PCR amplification confirmed that V. anguillarum M93 contained empA. These data demonstrate that the empA metalloprotease of V. anguillarum is specifically induced by gastrointestinal mucus.  相似文献   

6.
7.
The entomopathogenic fungus Verticillium lecanii is a well-known biocontrol agent. V. lecanii produces subtilisin-like serine protease (Pr1), which is important in the biological control activity of some insect pests by degrading insect cuticles. In this study, a subtilisin-like serine protease gene VlPr1 was cloned from the fungus and the VlPr1 protein was expressed in Escherichia coli. The VlPr1 gene contains an open reading frame (ORF) interrupted by three short introns, and encodes a protein of 379 amino acids. Protein sequence analysis revealed high homology with subtilisin serine proteases. The molecular mass of the protease was 38 kDa, and the serine protease exhibited its maximal activity at 40°C and pH 9.0. Protease activity was also affected by Mg2+ and Ca2+ concentration. The protease showed inhibitory activity against several plant pathogens, especially towards Fusarium moniliforme.  相似文献   

8.
Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine proteases cathepsin B and papain which have more importance in pharmaceutical industry. The protease inhibitor also showed complete inhibition of activities of the commercially available proteases of Bacillus licheniformis and Aspergillus oryzae. However, inhibitory activities toward subtilisin, esperase, pronase E and proteinase K were negligible. Further, it was found that the protease inhibitor could prevent proteolysis in a commercially valuable shrimp Penaeus monodon during storage indicating the scope for its application as a seafood preservative. This is the first report on isolation of a protease inhibitor from M. oleifera.  相似文献   

9.
Alkaline protease from Oerskovia xanthineolytica TK-1 was purified to an electrophoretically homogeneous state by phenyl-Sepharose CL-4B and DEAE-Sephacel. The molecular mass of the enzyme was 20,000 Da by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 9.5–11.0 and 50°C. It was inhibited by inhibitors of serine protease. The enzyme preferentially hydrolyzed the ester of phenylalanine among N-CBZ amino acid p-nitrophenol esters. These results indicate that the protease can be classified as an alkaline serine protease.  相似文献   

10.
Bacillus circulans MTCC 7906, an extracellular alkaline protease producer was genetically characterized. B. circulans genomic DNA was isolated, oligonucleotide primers specific to alkaline protease gene of B. circulans were designed and its PCR amplification was done. The purified PCR product and pTrcHisA vector were subjected to restriction digestion with NcoI and HindIII and transformed into Escherichia coli DH5-α competent cells. The recombinant expression of alkaline protease gene studied by inducible expression and analysis by SDS-PAGE, established that the alkaline protease protein had an estimated molecular size of 46 kDa. Gene sequencing of the insert from selected recombinant clone showed it to be a 1329 bp gene encoding a protein of 442 amino acids. The sequence was blasted and aligned with known alkaline protease genes for comparison with their nucleotide and amino acid sequences. This identified major matches with three closely related subsp. of B. subtilis (B. subtilis subsp. subtilis strain 168, B. subtilis BSn5 and B. subtilis subsp. spizizenii strain W23). The insert also showed a number of substitutions (mutations) with other sp. of Bacillus which established that alkaline protease of B. circulans MTCC 7906 is a novel gene. The phylogenetic analysis of alkaline protease gene and its predicted amino acid sequences also validated that alkaline protease gene is a novel gene and the same has been accessioned in GenBank with accession number JN645176.1.  相似文献   

11.
A protease inhibitor from the hemolymph of crayfish, Astacus astacus, has been purified by differential centrifugation, acid precipitation and preparative isoelectric focusing. The inhibitor was apparent homogenous in SDS-electrophoresis and had a molecular weight of 23,000. pI was determined to be 4.7 by isoelectric focusing. No inhibitory activity was lost when the inhibitor was incubated in a pH range of 1–11.5. The purified inhibitor was heat stable. Urea (6 m) had no effect upon the inhibitor. The inhibitor was active against subtilisin and a partly purified protease from the fungus Aphanomyces astaci. Pronase was slightly inhibited whereas trypsin, chymotrypsin, papain, Arthrobacter protease, and extracellular proteases from the fungi Aphanomyces stellatus and A. laevis were unaffected. The importance of protease inhibitors in pathogenesis between the parasitic fungus, A. astaci, and its crayfish host, A. astacus is discussed.  相似文献   

12.
Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-l-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~ 38 kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~ 28 kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two flurophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN (defective in AI-1), luxS (defective in BAI-2), and luxN/luxS (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS mutant (MM30) and luxN/luxS double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating extracellular protease production in V. harveyi.  相似文献   

13.
The marine bacterium Pseudoalteromonas sp. strain A28 was able to kill the diatom Skeletonema costatum strain NIES-324. The culture supernatant of strain A28 showed potent algicidal activity when it was applied to a paper disk placed on a lawn of S. costatum NIES-324. The condensed supernatant, which was prepared by subjecting the A28 culture supernatant to ultrafiltration with a 10,000-Mw-cutoff membrane, showed algicidal activity, suggesting that strain A28 produced extracellular substances capable of killing S. costatum cells. The condensed supernatant was then found to have protease and DNase activities. Two Pseudoalteromonas mutants lacking algicidal activity, designated NH1 and NH2, were selected after N-methyl-N′-nitrosoguanidine mutagenesis. The culture supernatants of NH1 and NH2 showed less than 15% of the protease activity detected with the parental strain, A28. The protease was purified to homogeneity from A28 culture supernatants by using ion-exchange chromatography followed by preparative gel electrophoresis. Paper-disk assays revealed that the purified protease had potent algicidal activity. The purified protease had a molecular mass for 50 kDa, and the N-terminal amino acid sequence was determined to be Ala-Thr-Pro-Asn-Asp-Pro. The optimum pH and temperature of the protease were found to be 8.8 and 30°C, respectively, by using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a substrate. The protease activity was strongly inhibited by phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate, antipain, chymostatin, and leupeptin. No significant inhibition was detected with EDTA, EGTA, phenanthroline or tetraethylenepentamine. These results suggest that Pseudoalteromonas sp. strain A28 produced an extracellular serine protease which was responsible for the algicidal activity of this marine bacterium.  相似文献   

14.
15.

Background

Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear.

Principal Findings

Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI), Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2), Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI), and Buthus martensii Ascaris-type protease inhibitor (BmAPI). The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues “AAV” and might be a useful template to produce new serine protease inhibitors.

Conclusions/Significance

To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the development of diagnostic and therapeutic agents for human diseases that target diverse proteases.  相似文献   

16.
Twelve marine bacterial cultures were screened for extracellular protease activity, and the bacterium CFR26M which exhibited the highest activity on caseinate agar plate was identified as an Exiguobacterium sp. Significant amount of extracellular protease (5.9?±?0.3 U/ml) and antioxidant materials, measured as 2,2′-diphenyl picrylhydrazyl (DPPH) radical scavenging activity (44.4?±?0.5 %), was produced by CFR26M in submerged fermentation using a shrimp biowaste medium. Response surface methodology (RSM) was employed to optimize the process variables for maximum production of protease and antioxidant materials by CFR26M. Among the seven variables screened by two-level 2**(7–2) fractional factorial design, the concentration of shrimp biowaste, sugar, and phosphate was found to be significant (p?≤?0.05). The optimum levels of these variables were determined by employing the central composite design (CCD) of RSM. The coefficient of determination (R 2) values of 0.9039 and 0.8924 for protease and antioxidant, respectively, indicates the accuracy of the CCD models. The optimum levels of shrimp biowaste, sugar, and phosphate were 21.2, 10.5, and 2.3 % (w/v) for production of protease and 28.8, 12, and 0.32 % (w/v) for production of antioxidant material, respectively. The concentration of shrimp biowaste, sugar, and phosphate had linear and quadratic effect on both protease and antioxidant productions. RSM optimization yielded 6.3-fold increases in protease activity and 1.6-fold in antioxidant material production. The crude protease of CFR26M had a maximum activity at 32?±?2 °C with pH 7.6. This is the first report on the use of marine Exiguobacterium sp. for concomitant production of protease and antioxidant materials from shrimp biowaste.  相似文献   

17.
An extracellular toxic protease, KB76 from Brevibacterium otitidis was successfully purified to 31.3-fold by anion-exchange and gel filtration chromatography. The molecular mass was determined to be 47 kDa using SDS-PAGE. The optimum temperature and pH of the protease were 7.4 and 40°C, respectively. Ethylenediaminetetraacetic acid and phenylmethylsulfonyl fluoride inhibited the activity of the enzyme but soybean trypsin inhibitor and aprotinin had no obvious inhibition, which suggested the presence of both metal and hydrosulfuryl at or near the active site. Additionally, the isoelectric point of this protein was 5.5 ± 0.2. Its apparent K m and V max for the synthetic substrate N-succinyl-L-phenylalanine p-nitroanilide were 2.41 mM and 21.74 μM/min, respectively. Further, studying the lethality of the protease on mice by intraperitoneal injection, it exhibited 48-h LD50 value of 9.6 mg/kg body weight. Gross and electron microscopic study in mice revealed that purified protease was capable of eliciting a variety of tissue responses resulted in liver necrosis. In conclusion, this protease produced by B. otitidis represents a potential toxic agent.  相似文献   

18.
A neutral high salt tolerant protease from Aspergillus oryzae CICIM F0899 which could be used for soy sauce production and other relevant applications under high-salt conditions was purified to homogeneity through ammonium sulfate precipitation, ion-exchange chromatography and gel filtration chromatography with overall recovery of 2%. Its molecular weight was estimated to be 50 kDa by SDS-PAGE. The optimum pH and temperature for activity of the extracellular protease of A. oryzae CICIM F0899 were shown to be between 7.0–9.0, and 50°C, respectively. The protease behaved high salt tolerance in 18% NaCl and retained 72% of initial activity after 14 days, indicating the high stability. The enzyme activity was inhibited by metal ions such as Al3+ and Ag+, and slightly activated by Mn2+ and Cu2+. A kinetic model incorporating the Debye-Hückel limiting law was proposed for A. oryzae CICIM F0899 protease hydrolysis of casein at ionic strength NaCl from 0.10 to 3.18 M. It was found that, with the higher ionic strength, the Michaelis constant K m of the protease monotonically increased while the turnover number k cat decreased in accordance with first order kinetic model. The high-salt tolerant protease has been demonstrated to be promising for the soy sauce production process.  相似文献   

19.
This study investigated the purification and biochemical characterization of the protease produced by Lactobacillus fermentum R6 isolated from Harbin dry sausages. The optimized fermentation conditions were as follows: a fermentation time of 48 h, an initial pH of 6 and a fermentation temperature of 37 °C. The 37.7 kDa extracellular protease was purified using ammonium sulphate deposition, an ion exchange layer system and gel filtration. The protease produced by L. fermentum R6 had the highest initial velocity and kcat/Km at pH 6, 40 °C. The microbial protease activity could be inhibited by ethylene diamine tetraacetic acid disodium salt (EDTA). The Vmax and Km of the protease were 58.2 ± 1.42 mg/min and 17.3 ± 0.85 mg/mL, respectively. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) reflected the ability of the protease to hydrolyse myofibrillar and sarcoplasmic proteins, in particular, myosin heavy chain, paramyosin, phosphorylase and creatine kinase-M type. In conclusion, L. fermentum R6 can be used as a starter culture or an enzyme-producing strain for the inoculation of Harbin dry sausages.  相似文献   

20.
A chymotrypsin serine protease (designated Sc-CHYM) was purified by gel filtration and anion-exchange chromatography from excretory-secretory products of parasitic stage Steinernemacarpocapsae. The purified protease had an apparent molecular mass of 30 kDa and displayed a pI of 5.9. This protease demonstrated high activity against the chymotrypsin-specific substrate N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide and was highly sensitive to the inhibitor aprotinin. This protease digested the chromogenic substrate N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide with Km, Vmax and kcat values of 409 μM/min, 0.389 μM/min and 24.9 s−1, respectively. The protease was most active at pH 8.0 and 35 °C, and its proteolytic activity was almost completely reduced after incubation at 75 °C for 30 min. In vitro, this enzyme suppressed prophenoloxidase activity. In vivo, demonstration of encapsulation and melanization by purified chymotrypsin imbibed beads showed it could prevent hemocyte encapsulation and melanization by 12 and 24 h, respectively. Sequence comparison and evolutionary marker analysis showed that the putative protein was a chymotrypsin-like protease with potential degradative, developmental and fibrinolytic functions. Expression pattern analysis revealed that the gene expression of Sc-CHYM was up-regulated in the parasitic stage. Sc-CHYM was clustered with several insect chymotrypsins and formed an ancestral branch in the phylogenetic tree, suggesting that Sc-CHYM branched off at an early stage of cluster divergence. The results of this study suggest that Sc-CHYM is a new member of the chymotrypsin serine protease family and that it might act as a virulence factor in host-parasite interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号