首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

2.
In arid and semiarid ecosystems, the potential threats of exotic invasive species are enhanced due to increasing human activities. Biological soil crusts (BSCs), acting as arid ecosystem engineers, may play an important role in preventing the establishment of exotic invasive plants. Our goal was to examine whether BSCs could inhibit the establishment of probable exotic plant species originating from adjacent grasslands located along the southeast edge of the Tengger Desert. In our study, we investigated the effects of three BSC types (cyanobacteria, lichen, and moss crusts) under two disturbance conditions (intact and disturbed) on the establishment of two exotic plant species (Ceratoides latens and Setaria viridis) using indoor experiments. We found both negative and positive effects of BSCs on the establishment of the two exotic plant species. Compared with the disturbed BSCs, the germination percentages of C. latens and S. viridis were reduced by 54% to 87% and 89% to 93%, respectively, in intact BSCs. In contrast, BSCs significantly promoted the height growth and aboveground biomass of the two exotic plant species (< .05) by enhancing the soil water and nutrient availability for the exotic plants. Our results confirm that BSCs strongly suppress the rapid expansion of exotic plant populations by inhibiting germination of seed with big size or appendages and have a weak inhibitory effect on exotic plant with small and smooth seeds. This may decrease the threat of propagation of exotic species. In the meantime, BSCs promote the growth of a few successful engraftment seedlings, which increased the beta diversity. Our work suggests that better understanding the two opposing effects of BSCs on the establishment of exotic plant species in different growth stages (germination and growth) is important for maintaining the health and stability of revegetated regions.  相似文献   

3.
Aims In perennial species, the allocation of resources to reproduction results in a reduction of allocation to vegetative growth and, therefore, impacts future reproductive success. As a consequence, variation in this trade-off is among the most important driving forces in the life-history evolution of perennial plants and can lead to locally adapted genotypes. In addition to genetic variation, phenotypic plasticity might also contribute to local adaptation of plants to local conditions by mediating changes in reproductive allocation. Knowledge on the importance of genetic and environmental effects on the trade-off between reproduction and vegetative growth is therefore essential to understand how plants may respond to environmental changes.Methods We conducted a transplant experiment along an altitudinal gradient from 425 to 1?921 m in the front range of the Western Alps of Switzerland to assess the influence of both altitudinal origin of populations and altitude of growing site on growth, reproductive investment and local adaptation in Poa alpina .Important findings In our study, the investment in reproduction increased with plant size. Plant growth and the relative importance of reproductive investment decreased in populations originating from higher altitudes compared to populations originating from lower altitudes. The changes in reproductive investment were mainly explained by differences in plant size. In contrast to genetic effects, phenotypic plasticity of all traits measured was low and not related to altitude. As a result, the population from the lowest altitude of origin performed best at all sites. Our results indicate that in P. alpina genetic differences in growth and reproductive investment are related to local conditions affecting growth, i.e. interspecific competition and soil moisture content.  相似文献   

4.
To predict the possible evolutionary response of a plant species to a new environment, it is necessary to separate genetic from environmental sources of phenotypic variation. In a case study of the invader Solidago altissima, the influences of several kinds of parental effects and of direct inheritance and environment on offspring phenotype were separated. Fifteen genotypes were crossed in three 5 × 5 diallels excluding selfs. Clonal replicates of the parental genotypes were grown in two environments such that each diallel could be made with maternal/paternal plants from sand/sand, sand/soil, soil/sand, and soil/soil. In a first experiment (1989) offspring were raised in the experimental garden and in a second experiment (1990) in the glasshouse. Parent plants growing in sand invested less biomass in inflorescences but produced larger seeds than parent plants growing in soil. In the garden experiment, phenotypic variation among offspring was greatly influenced by environmental heterogeneity. Direct genetic variation (within diallels) was found only for leaf characters and total leaf mass. Germination probability and early seedling mass were significantly affected by phenotypic differences among maternal plants because of genotype ( genetic maternal effects ) and soil environment ( general environmental maternal effects ). Seeds from maternal plants in sand germinated better and produced bigger seedlings than seeds from maternal plants in soil. They also grew taller with time, probably because competition accentuated the initial differences. Height growth and stem mass at harvest (an integrated account of individual growth history) of offspring varied significantly among crosses within parental combinations ( specific environmental maternal effects ). In the glasshouse experiment, the influence of environmental heterogeneity and competition could be kept low. Except for early characters, the influence of direct genetic variation was large but again leaf characters (= basic module morphology) seemed to be under stricter genetic control than did size characters. Genetic maternal effects, general environmental maternal effects, and specific environmental maternal effects dominated in early characters. The maternal effects were exerted both via seed mass and directly on characters of young offspring. Persistent effects of the general paternal environment ( general environmental paternal effects ) were found for leaf length and stem and leaf mass at harvest. They were opposite in direction to the general environmental maternal effects, that is the same genotypes produced “better mothers” in sand but “better fathers” in soil. The general environmental paternal effects must have been due to differences in pollen quality, resulting from pollen selection within the male parent or leading to pre- or postzygotic selection within the female parent. The ranking of crosses according to mean offspring phenotypes was different in the two experiments, suggesting strong interaction of the observed effects with the environment. The correlation structure among characters changed less between experiments than did the pattern of variation of single characters, but under the competitive conditions in the garden plant height seemed to be more directly related to fitness than in the glasshouse. Reduced competition could also explain why maternal effects were less persistent in the glasshouse than in the garden experiment. Evolution via selection of maternal effects would be possible in the study population because these effects are in part due to genetic differences among parents.  相似文献   

5.
Intraspecific variation in seed size may result from life-history constraints or environmental conditions experienced. This variation in seed size is likely to affect the early stage of invasion as seed size may contribute to the success or failure of population establishment. However, only a few studies have examined seed size variability and its causes and consequences for invaders so far. Using the invasive herb Lupinus polyphyllus, we estimated seed mass variation within and among 39 populations from two different geographic regions in a part of the invaded range. We empirically and experimentally evaluated the effect of seed number and environmental conditions (e.g. geographic region, habitat type, intraspecific competition) on seed mass, emergence and seedling performance. Seed mass varied threefold, being largest among individual plants within populations and smallest among populations. Variation in seed mass was neither related to seed number nor the environmental conditions examined, but led to differences in offspring performance, with emergence and seedling size increasing with seed mass. Larger L. polyphyllus seeds were better establishers than smaller seeds regardless of environmental conditions, indicating that the success of L. polyphyllus invasions is likely to depend positively on seed mass. Our results suggest that some plant species such as the invasive L. polyphyllus may not show an adaptive response in seed mass to resources or environmental conditions, which may partly explain their ability to colonise a range of different habitats.  相似文献   

6.
The importance of phenotypic plasticity for successful invasion by exotic plant species has been well studied, but with contradictory and inconclusive results. However, many previous studies focused on comparisons of native and invasive species that co‐occur in a single invaded region, and thus on species with potentially very different evolutionary histories. We took a different approach by comparing three closely related Centaurea species: the highly invasive C. solstitialis, and the noninvasive but exotic C. calcitrapa and C. sulphurea. These species have overlapping distributions both in their native range of Spain and in their non‐native range of California. We collected seeds from 3 to 10 populations from each region and species and grew them in common garden greenhouse conditions to obtain an F1 generation in order to reduce maternal effects. Then, F1 seeds were grown subjected to simulated herbivory, variation in nutrient availability, and competition, to explore plasticity in the responses to these conditions. We found little variation in phenotypic plasticity among species and regions, but C. solstitialis plants from California produced more biomass in competition than their Spanish conspecifics. This species also had the highest relative growth rates when in competition and when grown under low nutrient availability. Noninvasive congeners produced intermediate or opposite patterns.  相似文献   

7.
Plant–soil interactions directly affect plant success in terms of establishment, survival, growth and reproduction. Negative plant–soil feedback on such traits may therefore reduce the density and abundance of plants of a given species at a given site. Furthermore, if conspecific feedback varies among population sites, it could help explain geographic variation in plant population size. We tested for among-site variation in conspecific plant–soil feedback in a greenhouse experiment using seeds and soils from 8 natural populations of Lobelia siphilitica hosting 30–330 plants. The first cohort of seeds was grown on soil collected from each native site, while the second cohort was grown on the soil conditioned by the first. Our goal was to distinguish site-specific effects mediated by biotic and/or abiotic soil properties from those inherent in seed sources. Cohort 1 plants grown from seeds produced in small populations performed better in terms of germination, growth, and survival compared to plants produced in large populations. Plant performance decreased substantially between cohorts, indicating strong negative feedback. Most importantly, the strength of negative feedback scaled linearly (i.e., was less negative) with increasing size of the native plant population, particularly for germination and survival, and was better explained by soil- rather than seed-source effects. Even with a small number of sites, our results suggest that the potential for negative plant–soil feedback varies among populations of L. siphilitica, and that small populations were more susceptible to negative feedback. Conspecific plant–soil feedback may contribute to plant population size variation within a species’ native range.  相似文献   

8.
丛枝菌根真菌在外来植物入侵演替中的作用与机制   总被引:1,自引:0,他引:1  
外来植物入侵不仅是环境、经济和社会问题,也是一个生理学和生态学问题,尤其是入侵植物与本地植物、入侵植物和本地土壤生物之间的相互作用决定外来植物入侵程度。丛枝菌根真菌(AMF)作为土壤中一类极为重要的功能生物,在外来植物入侵演替过程中发挥多种不同作用。文章系统总结了AMF对入侵植物个体和群体的影响,入侵植物与本地植物竞争中AMF发挥的促进和抑制作用;探讨了AMF与入侵植物的相互作用关系,以及环境因子对AMF一入侵植物关系的影响:对AMF在外来植物入侵演替中的作用机制进行了讨论。旨在为探索控制生物入侵的新途径、为我国开展外来植物入侵研究与防控实践提供新思路。  相似文献   

9.
植物氮形态利用策略及对外来植物入侵性的影响   总被引:1,自引:0,他引:1  
氮是影响外来植物入侵性的重要因素之一, 但相关研究多关注土壤氮水平的效应, 较少考虑氮形态的作用。为从土壤氮形态利用的角度阐释外来植物的入侵机制, 本文在植物氮形态利用策略分析的基础上, 综述了外来植物氮形态利用的偏好性及其对入侵性的影响。植物的氮形态利用策略有偏好性和可塑性两种, 这可能与植物对土壤氮形态特性的长期适应有关; 植物不仅可以对土壤氮形态做出响应, 而且还能改造土壤氮形态, 并对改变后的土壤氮形态做出反馈响应。很多外来植物入侵硝态氮占优势的干扰生境, 偏好硝态氮的外来植物与本地植物竞争硝态氮; 而偏好铵态氮的外来植物通过抑制土壤硝化作用, 营造铵态氮环境, 促进自身生长, 同时抑制偏好硝态氮的本地植物生长。然而, 植物氮形态利用策略不是一成不变的, 而是受多种生物和非生物因素共同作用影响的复杂过程, 今后应加强多因素交互作用对外来入侵植物氮形态利用策略的影响及机制研究, 更好地揭示氮形态利用策略, 尤其是氮形态利用的可塑性与外来植物入侵性的关系。  相似文献   

10.
Ecosystems that are heavily invaded by an exotic species often contain abundant populations of other invasive species. This may reflect shared responses to a common factor, but may also reflect positive interactions among these exotic species. Armand Bayou (Pasadena, TX) is one such ecosystem where multiple species of invasive aquatic plants are common. We used this system to investigate whether presence of one exotic species made subsequent invasions by other exotic species more likely, less likely, or if it had no effect. We performed an experiment in which we selectively removed exotic rooted and/or floating aquatic plant species and tracked subsequent colonization and growth of native and invasive species. This allowed us to quantify how presence or absence of one plant functional group influenced the likelihood of successful invasion by members of the other functional group. We found that presence of alligatorweed (rooted plant) decreased establishment of new water hyacinth (free-floating plant) patches but increased growth of hyacinth in established patches, with an overall net positive effect on success of water hyacinth. Water hyacinth presence had no effect on establishment of alligatorweed but decreased growth of existing alligatorweed patches, with an overall net negative effect on success of alligatorweed. Moreover, observational data showed positive correlations between hyacinth and alligatorweed with hyacinth, on average, more abundant. The negative effect of hyacinth on alligatorweed growth implies competition, not strong mutual facilitation (invasional meltdown), is occurring in this system. Removal of hyacinth may increase alligatorweed invasion through release from competition. However, removal of alligatorweed may have more complex effects on hyacinth patch dynamics because there were strong opposing effects on establishment versus growth. The mix of positive and negative interactions between floating and rooted aquatic plants may influence local population dynamics of each group and thus overall invasion pressure in this watershed.  相似文献   

11.
In plant species producing non‐dormant seeds, the germination time (from the start of imbibition to radicle emergence) is the main factor determining the timing of seedling emergence. We investigated maternal and paternal genetic effects on the germination time of non‐dormant seeds of a monocarpic perennial, Aster kantoensis Kitamura (Compositae). Three sets of reciprocal diallel crosses among five plants were conducted to produce genetic variation in seeds, and the germination time of the progeny of each parent was determined. The effects of the maternal parent and the interaction of maternal and paternal parents on the germination time of progeny were significant in all sets, and the effect of the paternal parent was significant in two of the three sets. This result means that the germination time of the progeny of a maternal or paternal parent can vary with the genotype of its mating partners. Because variation in the emergence time of seedlings contributes to avoiding seedling loss owing to unpredictable environmental changes, genetic variation in the germination time among the progeny of each parent mating with multiple partners could contribute to the establishment of the parent's seedlings in species producing non‐dormant seeds in the field.  相似文献   

12.
土壤养分分布具有高度空间异质性, 植物的根系觅养行为是其对土壤养分异质性的一种适应。不同植物为了适应养分异质性会产生不同的根系觅养行为, 通过调整自身的根系觅养范围、觅养精度和觅养速度来更好地吸收利用土壤中的养分。外来植物与本地植物的竞争是决定其成功入侵的重要因素, 土壤养分等环境因素会影响它们之间的竞争关系。近年来, 外来入侵植物的觅养行为逐渐受到人们的关注, 关于入侵植物根系觅养行为的研究成果陆续出现: (1)总体来看, 外来入侵植物具有较强的根系觅养能力, 但根系觅养范围与觅养精度之间的权衡关系还不确定; (2)营养异质性会影响入侵植物与本地植物之间的竞争, 反过来, 二者之间的竞争也会影响根系觅养行为对营养异质性的响应; (3)丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能够提高入侵植物的根系觅养能力, 外来植物入侵能够改变入侵植物对AMF的偏好性, 形成AMF对入侵的正反馈作用, 而本地植物与AMF的相互作用也会影响入侵植物的竞争力。未来还应加强营养异质环境下种间竞争和AMF共生对入侵植物根系觅养行为的影响机制研究, 以及全球变化背景下入侵植物根系觅养行为的变化与机制方面的研究, 可以更深入地认识外来植物的觅养行为在其成功入侵中的作用, 并为利用营养调控来防控入侵植物提供理论依据。  相似文献   

13.
Does Carpobrotus edulis have an impact on native plants? How do C. edulis’ soil residual effects affect the maintenance of native populations? What is the extent of interspecific competition in its invasion process? In order to answer those questions, we established pure and mixed cultures of native species and C. edulis on soil collected from invaded and native areas of Mediterranean coastal dunes in the Iberian Peninsula. We examined the impact of the invader on the germination, growth and survival of seeds and adult plants of two native plant species (Malcolmia littorea (L.) R.Br, and Scabiosa atropurpurea L.) growing with ramets or seeds of C. edulis. Residual effects of C. edulis on soils affected the germination process and early growth of native plants in different ways, depending on plant species and density. Interspecific competition significantly reduced the germination and early growth of native plants but this result was soil, density, timing and plant species dependent. Also, at any density of adult individuals of C. edulis, established native adult plants were not competitive. Moreover, ramets of C. edulis had a lethal effect on native plants, which died in a short period of time. Even the presence of C. edulis seedlings prevents the recruitment of native species. In conclusion, C. edulis have strong negative impacts on the germination, growth and survival of the native species M. littorea and S. atropurpurea. These impacts were highly depended on the development stages of native and invasive plants. Our findings are crucial for new strategies of biodiversity conservation in coastal habitats.  相似文献   

14.
Habitat degradation and loss can result in population decline and genetic erosion, limiting the ability of organisms to cope with environmental change, whether this is through evolutionary genetic response (requiring genetic variation) or through phenotypic plasticity (i.e., the ability of a given genotype to express a variable phenotype across environments). Here we address the question whether plants from small populations are less plastic or more susceptible to environmental stress than plants from large populations. We collected seed families from small (<100) versus large natural populations (>1,000 flowering plants) of the rare, endemic plant Cochlearia bavarica (Brassicaceae). We exposed the seedlings to a range of environments, created by manipulating water supply and light intensity in a 2 x 2 factorial design in the greenhouse. We monitored plant growth and survival for 300 days. Significant effects of offspring environment on offspring characters demonstrated that there is phenotypic plasticity in the responses to environmental stress in this species. Significant effects of population size group, but mainly of population identity within the population size groups, and of maternal plant identity within populations indicated variation due to genetic (plus potentially maternal) variation for offspring traits. The environment x maternal plant identity interaction was rarely significant, providing little evidence for genetically- (plus potentially maternally-) based variation in plasticity within populations. However, significant environment x population-size-group and environment x population-identity interactions suggested that populations differed in the amount of plasticity, the mean amount being smaller in small populations than in large populations. Whereas on day 210 the differences between small and large populations were largest in the environment in which plants grew biggest (i.e., under benign conditions), on day 270 the difference was largest in stressful environments. These results show that population size and population identity can affect growth and survival differently across environmental stress gradients. Moreover, these effects can themselves be modified by time-dependent variation in the interaction between plants and their environment.  相似文献   

15.
每日盐度波动对真盐生植物盐地碱蓬种内相互作用沿盐度梯度的影响 土壤盐度的异质性是河口潮间带的一个突出的环境特征,影响植物的生长和盐沼中生物相互作用的转变。本研究旨在探究盐度梯度和盐度波动对一种真盐生植物的种内相互作用的交互影响。  相似文献   

16.
The anthropogenic spread of exotic ecosystem engineers profoundly impacts native ecosystems. Exotic earthworms were shown to alter plant community composition of the understory of deciduous forests previously devoid of earthworms. We investigated the effect of two exotic earthworm species (Lumbricus terrestris L. and Octolasion tyrtaeum Savigny) belonging to different ecological groups (anecic and endogeic) on the emergence of plants from the seed bank of a northern North American deciduous forest using the seedling emergence method. We hypothesized that (1) exotic earthworms change the seedling emergence from the plant seed bank, (2) L. terrestris increases the emergence of plant seedlings of the deeper soil layer but decreases that of the upper soil layer due to plant seed burial, and (3) O. tyrtaeum decreases plant seedling emergence due the damage of plant seeds. Indeed, exotic earthworms altered the emergence of plant seedlings from the seed bank and the functional composition of the established plant seedlings. Surprisingly, although L. terrestris only marginally affected seedling emergence, O. tyrtaeum changed the emergence of native plant species from the seed bank considerably. In particular, the number of emerging grass and herb seedlings were increased in the presence of O. tyrtaeum in both soil layers. Moreover, the impacts of earthworms depended on the identity of plant functional groups; herb species benefited, whereas legumes suffered from the presence of exotic earthworms. The results highlight the strong effect of invasive belowground ecosystem engineers on aboveground ecosystem characteristics and suggest fundamental changes of ecosystems by human-spread earthworm species.  相似文献   

17.
Trait-based resource competition in plants, wherein more similar plants compete more strongly for resources, is a foundation of niche-based explanations for the maintenance of diversity in plant communities. Alternatively, neutral theory predicts that community diversity can be maintained despite equivalent resource requirements among species. We examined interactions at three life history stages (germination, survival, and juvenile-adult growth) for three native and three exotic California annual species in a glasshouse experiment. We varied plant density and species composition in small pots, with pots planted with either intraspecific seeds or in a three species mix of intra- and interspecific neighbors. We saw a range of facilitative, neutral, and competitive interactions that varied significantly by species, rather than by native or exotic status. There were more competitive interactions at the emergence and juvenile-adult growth stages and more facilitative interactions for survival. Consequently, the relative strength of competition in intraspecific versus mixed-species communities depended on whether we considered only the juvenile-adult growth stage or the entire life history of the interacting plants. Using traditional analysis of juvenile-adult growth only, all species showed negative density-dependent interactions for final biomass production. However, when the net effect of plant interactions from seed to adult was considered, which is a prediction of population growth, two native species ceased to show negative density dependence, and the difference between intraspecific and mixed-species competition was only significant for one exotic species. Results were consistent with predictions of neutral, rather than niche, theory for five of six species.  相似文献   

18.
Wild rice, Oryza rufipogon, has endangered species conservation status and it is subject to in situ conservation in China. To understand the potential of the seed bank in species conservation and population restoration, this study compared the genetic diversity of O. rufipogon plants with that of its soil seed banks in two marshes. A total of 11 pairs of rice SSR primers were used and 9 were polymorphic. Allele frequencies of the seeds differed significantly from those of surface plants and varied between soil layers. Relatively more alleles and higher genetic diversity (H e) were found in plant populations, relative to seed banks. The numbers of germinable seeds and the level of genetic variation in seed banks decreased with the increasing of soil depth, indicating a rapid seed loss. Genetic differentiation was detected between sites and between plant and seed populations, as well as among seeds of different soil strata. Rapid seed loss, partly dormancy loss, and nonrandom seed mortality are discussed as the possible contributors to the pattern of reduced genetic variation within seed banks, compared to plants. These could also be responsible for the considerable genetic differentiation between populations. The seed population held about 72% of the total genetic variation of O. rufipogon in each marsh, indicating the potential of seed banks for restoring population variabilities if the plant populations were lost.  相似文献   

19.
Local, wild-collected seeds of native plants are recommended for use in ecological restoration to maintain patterns of adaptive variation. However, some environments are so drastically altered by exotic, invasive weeds that original environmental conditions may no longer exist. Under these circumstances, cultivated varieties selected for improved germination and vigor may have a competitive advantage at highly disturbed sites. This study investigated differences in early establishment and seedling performance between wild and cultivated seed sources of the native grass, Poa secunda, both with and without competition from the invasive exotic grass, Bromus tectorum. We measured seedling survival and above-ground biomass at two experimental sites in western Montana, and found that the source of seeds selected for restoration can influence establishment at the restoration site. Cultivars had an overall advantage when compared with local genotypes, supporting evidence of greater vigor among cultivated varieties of native species. This advantage, however, declined rapidly in the presence of B. tectorum and most accessions were not significantly different for growth and survival in competition plots. Only one cultivar had a consistent advantage despite a strong decline in its performance when competing with invasive plants. As a result, cultivated varieties did not meet expectations for greater establishment and persistence relative to local genotypes in the presence of invasive, exotic species. We recommend the use of representative local or regional wild seed sources in restoration to minimize commercial selection, and a mix of individual accessions (wild, or cultivated when necessary) in highly invaded settings to capture vigorous genotypes and increase the odds native plants will establish at restoration sites.  相似文献   

20.
Invasive exotic plants often grow fast, reproduce rapidly and display considerable phenotypic plasticity in their invasive range, which may be essential characteristics for successful invasion. However, it remains unclear whether these characteristics are already present in native populations (pre-adaptation hypothesis) or evolve after introduction (genetic shift hypothesis).To test these hypotheses we compared means and phenotypic plasticity of vegetative and reproductive traits between populations of Impatiens glandulifera collected from either the invasive (Norway) or native range (India). Seeds were sown and the resulting plants were exposed to different experimental environments in a glasshouse. We also tested whether trait means and reaction norms harbored genetic variation, as this may promote fitness in the novel environment.We did not find evidence that invasive populations of I. glandulifera grew more vigorously or produced more seeds than native populations. Phenotypic plasticity did not differ between the native and invasive range, except for the number of nodes which was more plastic in the invasive range. Genetic variation in the slope of reaction norms was absent, suggesting that the lack of change in phenotypic plasticity between native and invasive populations resulted from low genetic variation in phenotypic plasticity initially harbored by this species. Post-introduction evolution of traits thus probably did not boost the invasiveness of I. glandulifera. Instead, the species seems to be pre-adapted for invasion.We suggest that differences in habitat between the native and invasive range, more specifically the higher nutrient availability observed in the new environment, are the main factor driving the invasion of this species. Indeed, plants in the more nutrient-rich invasive range had greater seed mass, likely conferring a competitive advantage, while seed mass also responded strongly to nutrients in the glasshouse. Interactions between habitat productivity and herbivore defense may explain the lack of more vigorous growth in the new range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号