首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether niche processes, like environmental filtering, or neutral processes, like dispersal limitation, are the primary forces driving community assembly is a central question in ecology. Here, we use a natural experimental system of isolated tree “islands” to test whether environment or geography primarily structures fungal community composition at fine spatial scales. This system consists of isolated pairs of two distantly related, congeneric pine trees established at varying distances from each other and the forest edge, allowing us to disentangle the effects of geographic distance vs. host and edaphic environment on associated fungal communities. We identified fungal community composition with Illumina sequencing of ITS amplicons, measured all relevant environmental parameters for each tree—including tree age, size and soil chemistry—and calculated geographic distances from each tree to all others and to the nearest forest edge. We applied generalized dissimilarity modelling to test whether total and ectomycorrhizal fungal (EMF) communities were primarily structured by geographic or environmental filtering. Our results provide strong evidence that as in many other organisms, niche and neutral processes both contribute significantly to turnover in community composition in fungi, but environmental filtering plays the dominant role in structuring both free‐living and symbiotic fungal communities at fine spatial scales. In our study system, we found pH and organic matter primarily drive environmental filtering in total soil fungal communities and that pH and cation exchange capacity—and, surprisingly, not host species—were the largest factors affecting EMF community composition. These findings support an emerging paradigm that pH may play a central role in the assembly of all soil‐mediated systems.  相似文献   

2.
Aim It is a central issue in ecology and biogeography to understand what governs community assembly and the maintenance of biodiversity in tropical rain forest ecosystems. A key question is the relative importance of environmental species sorting (niche assembly) and dispersal limitation (dispersal assembly), which we investigate using a large dataset from diverse palm communities. Location Lowland rain forest, western Amazon River Basin, Peru. Methods We inventoried palm communities, registering all palm individuals and recording environmental conditions in 149 transects of 5 m × 500 m. We used ordination, Mantel tests and indicator species analysis (ISA) to assess compositional patterns, species responses to geographical location and environmental factors. Mantel tests were used to assess the relative importance of geographical distance (as a proxy for dispersal limitation) and environmental differences as possible drivers of dissimilarity in palm species composition. We repeated the Mantel tests for subsets of species that differ in traits of likely importance for habitat specialization and dispersal (height and range size). Results We found a strong relationship between compositional dissimilarity and environmental distance and a weaker but also significant relationship between compositional dissimilarity and geographical distance. Consistent with expectations, relationships with environmental and geographical distance were stronger for understorey species than for canopy species. Geographical distance had a higher correlation with compositional dissimilarity for small‐ranged species compared with large‐ranged species, whereas the opposite was true for environmental distance. The main environmental correlates were inundation and soil nutrient levels. Main conclusions The assembly of palm communities in the western Amazon appears to be driven primarily by species sorting according to hydrology and soil, but with dispersal limitation also playing an important role. The importance of environmental characteristics and geographical distance varies depending on plant height and geographical range size in agreement with functional predictions, increasing our confidence in the inferred assembly mechanisms.  相似文献   

3.
Metacommunity theory proposes that a collection of local communities are linked by dispersal and the resulting compositions are a product of both niche‐based (species sorting) and spatial processes. Determining which of these factors is most important in different habitats can provide insight into the regulation of community assembly. To date, the metacommunity organization of heterotrophic soil bacteria is largely unknown. Spatial variation of soil bacterial communities could arise from (1) the resource heterogeneity produced by plant communities through root exudation and/or litter inputs; (2) the heterogeneity of soil environmental properties; and (3) pure spatial processes, including dispersal limitation and stochastic assembly. Understanding the relative importance of these factors for soil bacterial community structure and function could increase our ability to restore soil communities. We utilized an ongoing tallgrass prairie restoration experiment in northeastern Kansas to assess if restoring native plant communities produced changes in bacterial communities 6 years after restoration. We further examined the relative importance of the spatial heterogeneity of plant communities, soil properties, and pure spatial effects for bacterial community structure in the old‐field restoration site. We found that soil bacterial communities were not influenced by plant restoration, but rather, by the local heterogeneity of soil environmental properties (16.9% of bacterial community variation) and pure spatial effects (11.1%). This work also stresses the idea that restoring bacterial communities can take many years to accomplish due to the inherent changes that occur to the soil after cultivation and the time it takes for the re‐establishment of soil quality.  相似文献   

4.
Abstract: Adaptive evolution within species and community assembly involving multiple species are both affected by dispersal and spatiotemporal environmental variation and may thus interact with each other. We examined this interaction in a simple three-patch metacommunity and found that these two processes produce very different associations between species composition and local environment. In most conditions, we find a pattern we call "species sorting," wherein local adaptation by resident species cannot prevent invasions by other preadapted species as environmental conditions change (strong association between local environmental conditions and local community composition). When dispersal rates are very low relative to the other two rates, local adaptation by resident species predominates, leading to strong priority effects that prevent successful colonization by other species that would have been well adapted, a pattern we call "local monopolization." When dispersal and evolutionary rates are both very high, we find that an evolving species outcompetes other species in all patches, a pattern we call "global monopolization." When environmental oscillations are very frequent, local monopolization predominates. Our findings indicate that there can be strong modification of community assembly by local adaptive processes and that these depend strongly on the relative rates of evolution, dispersal, and environmental change.  相似文献   

5.
Diatoms are widely used in stream quality assessment due to their response to the local environment. Diatoms are also influenced by many large-scale processes and so the diatom communities of boreal streams incorporate a strong spatial component at a regional level. What is not properly known yet is whether the variation in diatom communities between regions is larger than the variation in measured environmental variables. We studied the roles of environment and space in accounting for variability in stream diatom communities across four regions in Finland. According to canonical correspondence analysis, geographical coordinates, nutrient concentrations (total N and P), and water conductivity were the most important factors affecting variation in diatom community composition. Of physical factors, depth and current velocity were also significant. According to Mantel tests, both environmental and geographical distances were related to dissimilarity in diatom community composition. Analysis of Similarities indicated that the regional differences in diatom community composition were larger than the regional differences in environmental variables. We also found many indicator species confined to certain regions. Our results suggest that the four study regions differ in their diatom species composition more than in their environmental features and that diatoms are structured not only by the local environment but also by large-scale processes, possibly related to history, climate and dispersal. These results imply that, while diatom species composition reflects well the environmental differences between regions, future bioassessments would benefit from regional stratification. Otherwise, relationships with environmental variables may be masked by trans-regional differences in species pools caused by the large-scale processes.  相似文献   

6.
Zhichao Pu  Lin Jiang 《Oikos》2015,124(10):1327-1336
Ample evidence suggests that ecological communities can exhibit historical contingencies. However, few studies have explored whether differences in assembly history can generate alternative local community states in metacommunities in which local communities are linked by dispersal. In a protist microcosm experiment, we examined the influence of species colonization history on metacommunity assembly under homogeneous environmental conditions, by manipulating both the sequence of species colonization into local communities and the rate of dispersal among local communities. Whereas the role of dispersal in structuring local communities decreased over time and became non‐significant towards the end of the experiment, species colonization history significantly influenced local communities throughout the experiment. Local communities, regardless of the rate of dispersal among them, exhibited two alternative states characterized by the dominance of different species. The alternative community states, however, emerged in the absence of priority effects that were often associated with alternative community states found in other assembly studies. Rather, they were driven by variation in species interaction strength among local communities with different assembly histories. These results suggest that dispersal among local communities may not necessarily reduce the role of species colonization history in shaping metacommunity assembly, and that differences in species colonization history need to be explicitly considered as an important factor in causing heterogeneous community states in metacommunities.  相似文献   

7.
The relative importance of dispersal limitation versus environmental filtering for community assembly has received much attention for macroorganisms. These processes have only recently been examined in microbial communities. Instead, microbial dispersal has mostly been measured as community composition change over space (i.e., distance decay). Here we directly examined fungal composition in airborne wind currents and soil fungal communities across a 40 000 km2 regional landscape to determine if dispersal limitation or abiotic factors were structuring soil fungal communities. Over this landscape, neither airborne nor soil fungal communities exhibited compositional differences due to geographic distance. Airborne fungal communities shifted temporally while soil fungal communities were correlated with abiotic parameters. These patterns suggest that environmental filtering may have the largest influence on fungal regional community assembly in soils, especially for aerially dispersed fungal taxa. Furthermore, we found evidence that dispersal of fungal spores differs between fungal taxa and can be both a stochastic and deterministic process. The spatial range of soil fungal taxa was correlated with their average regional abundance across all sites, which may imply stochastic dispersal mechanisms. Nevertheless, spore volume was also negatively correlated with spatial range for some species. Smaller volume spores may be adapted to long-range dispersal, or establishment, suggesting that deterministic fungal traits may also influence fungal distributions. Fungal life-history traits may influence their distributions as well. Hypogeous fungal taxa exhibited high local abundance, but small spatial ranges, while epigeous fungal taxa had lower local abundance, but larger spatial ranges. This study is the first, to our knowledge, to directly sample air dispersal and soil fungal communities simultaneously across a regional landscape. We provide some of the first evidence that soil fungal communities are mostly assembled through environmental filtering and experience little dispersal limitation.  相似文献   

8.
Extremophilic microalgae are primary producers in acidic habitats, such as volcanic sites and acid mine drainages, and play a central role in biogeochemical cycles. Yet, basic knowledge about their species composition and community assembly is lacking. Here, we begin to fill this knowledge gap by performing the first large‐scale survey of microalgal diversity in acidic geothermal sites across the West Pacific Island Chain. We collected 72 environmental samples in 12 geothermal sites, measured temperature and pH, and performed rbcL amplicon‐based 454 pyrosequencing. Using these data, we estimated the diversity of microalgal species, and then examined the relative contribution of contemporary selection (i.e., local environmental variables) and dispersal limitation on the assembly of these communities. A species delimitation analysis uncovered seven major microalgae (four red, two green, and one diatom) and higher species diversity than previously appreciated. A distance‐based redundancy analysis with variation partitioning revealed that dispersal limitation has a greater influence on the community assembly of microalgae than contemporary selection. Consistent with this finding, community similarity among the sampled sites decayed more quickly over geographical distance than differences in environmental factors. Our work paves the way for future studies to understand the ecology and biogeography of microalgae in extreme habitats.  相似文献   

9.
The release of anthropogenic pollution into freshwater ecosystems has largely transformed biodiversity and its geographical distribution patterns globally. However, for many communities including ecologically crucial ones such as zooplankton, it is largely unknown how different communities respond to environmental pollution. Collectively, dispersal and species sorting are two competing processes in determining the structure and geographical distribution of zooplankton communities in running water ecosystems such as rivers. At fine geographical scales, dispersal is usually considered as the dominant factor; however, the relative role of species sorting has not been evaluated well, mainly because significant environmental gradients rarely exist along continuously flowing rivers. The Chaobai River in northern China represents a rare system, where a significant environmental gradient exists at fine scales. Here, we employed high‐throughput sequencing to characterize complex zooplankton communities collected from the Chaobai River, and tested the relative roles of dispersal and species sorting in determining zooplankton community structure along the pollution gradient. Our results showed distinct patterns of zooplankton communities along the environmental gradient, and chemical pollutant‐related factors such as total phosphorus and chlorophyll‐a were identified as the major drivers for the observed patterns. Further partial redundancy analyses showed that species sorting overrode the effect of dispersal to shape local zooplankton community structure. Thus, our results reject the dispersal hypothesis and support the concept that species sorting caused by local pollution can largely determine the zooplankton community structure when significant environmental gradients exist at fine geographical scales in highly polluted running water ecosystems.  相似文献   

10.
Aim We investigated the biogeographical patterns of phytoplankton, zooplankton and fish in freshwater ecosystems. We tested whether spatial distance or environmental heterogeneity act as potential factors controlling community composition. Location Northern and central Greece, eastern Mediterranean. Method Data on 310 phytoplankton, 72 zooplankton and 37 fish species were collected from seven freshwater systems. Species occurrence data were used to generate similarity matrices describing community composition. We performed Mantel tests to compare spatial patterns in community composition of phytoplankton, zooplankton and fish. Next, we examined the correlation between geographical distance and the degree of similarity in community composition. The analysis was repeated for different taxonomic, trophic and size‐based groups of the microorganisms studied. We assessed different environmental variables (topographic and limnological) as predictors of community composition. Results Phytoplankton community composition showed a strong positive correlation with environmental heterogeneity but was not correlated with the geographical distance between systems. Zooplankton community composition was unrelated to geographical distance and was only weakly correlated with environmental variables. In contrast, fish community similarity decayed significantly with distance. We found no relationship along all pairwise comparisons of the compositional matrices of the three groups. The pairwise comparisons of the different taxonomic, trophic and size‐based groups of the microorganism communities studied were in accordance with the results for the entire microorganism community. Main conclusions Our results support the proposition that the biogeography of microorganisms does not demonstrate a distance–decay pattern and further suggest that, in reality, the drivers of distribution depend on the specific community examined. In contrast, the biogeography of macroorganisms was affected by geographical distance. These differences reflect the dispersal abilities of the different organisms. The microorganisms exhibit passive dispersal through the air, with local environmental conditions structuring their community composition. On the other hand, for macroorganisms such as fish, the terrestrial environment could pose barriers to their dispersal; with fish structuring distinctive communities over greater distances. Overall, we suggest that the biogeography of freshwater phytoplankton and zooplankton reflects contemporary environmental conditions, while the biogeographical patterns for fish inhabiting the same systems are related to factors affecting their dispersal ability.  相似文献   

11.
Ecological and evolutionary processes influence community assembly at both local and regional scales. Adding a phylogenetic dimension to studies of species turnover allows tests of the extent to which environmental gradients, geographic distance and the historical biogeography of lineages have influenced speciation and dispersal of species throughout a region. We compare measures of beta diversity, phylogenetic community structure and phylobetadiversity (phylogenetic distance among communities) in 34 plots of Amazonian trees across white‐sand and clay terra firme forests in a 60 000 square kilometer area in Loreto, Peru. Dominant taxa in white‐sand forests were phylogenetically clustered, consistent with environmental filtering of conserved traits. Phylobetadiversity measures found significant phylogenetic clustering between terra firme communities separated by geographic distances of <200–300 km, consistent within recent local speciation at the watershed scale in the Miocene‐aged clay‐soil forests near the foothills of the Andes. Although both distance and habitat type yielded statistically significant effects on both species and phylogenetic turnover, the patterns we observed were more consistent with an effect of habitat specialization than dispersal limitation. Our results suggest a role for both broad‐scale biogeographic and evolutionary processes, as well as habitat specialization, influencing community structure in Amazonian forests.  相似文献   

12.
环境选择和扩散限制驱动温带森林土壤细菌群落的构建   总被引:1,自引:0,他引:1  
环境选择和扩散限制是生态系统中生物群落构建的两个基本过程,而两者相对作用的大小因研究尺度、群落属性和类型等有所不同.目前对温带亚高山森林土壤微生物群落构建的驱动因子和机制尚缺乏了解.本文利用PCR-DGGE技术研究庞泉沟自然保护区内5种典型森林包括华北落叶松林、青杄林、白杄林、油松林以及桦树林的6个森林土壤细菌群落(Lp MC1、Lp MC2、Pw MC、Pm MC、Pt MC、BMC)的结构特征及其影响因素,分析细菌群落结构与环境因子的相关性,以及土壤因子、植被和空间因素对细菌群落结构的影响.结果表明:研究区各样地土壤细菌群落的结构和生物多样性具有显著差异,低海拔落叶松和油松土壤细菌群落多样性较高(20条带),白杄林土壤细菌群落(13条带)多样性最低,高海拔落叶松土壤细菌群落多样性最高;土壤环境因子,如pH、土壤含水量、总碳、总氮、土壤有机质、速效磷以及土壤酶活性与土壤细菌群落多样性和结构显著相关;样地土壤细菌群落的beta多样性与群落的空间距离呈显著相关,表明扩散限制对群落结构具有一定的影响;方差分解分析结果显示,6个样地细菌群落结构的驱动因素大小依次为土壤因子(0.27)、空间因素(0.19)和植被(0.15);将区域土壤微生物作为"源群落",微宇宙试验结果显示,土壤因子是细菌群落结构形成的主要驱动力(0.35),同时源群落丰富的物种多样性对微宇宙土壤细菌群落结构具有显著影响.总之,在局域尺度下,环境选择对温带森林土壤细菌群落结构动态和多样性发挥主导作用,地理距离对群落结构具有显著影响,即确定性过程和随机过程共同决定局域森林土壤细菌群落结构,前者占主导地位.对于土壤细菌群落而言,扩散群落的组成和结构受到源群落的多样性特征和环境因子的双重影响.  相似文献   

13.
Composition of animal communities can be shaped by both local and regional processes. Among others, dispersal of organisms links local and regional patterns and determines the similarity of communities at increasing spatial distances. Unique and shared spatial and environmental contributions to fish community composition were calculated for watercourse distances between 49 hydrologically connected lakes in the German lowland area. Variation partitioning indicated a dominant unique effect of spatial predictors on fish community composition, whereas the effects of lake morphometry and productivity were weaker. The spatial effect was attributable to an uneven occurrence of small, littoral fish species found even at the small spatial extension covered here (maximum spatial distance ?550 km). Distance decay of community similarity was moderate, but significant, if all 31 fish species were considered, but the slope of the decay function became steeper if only 11 small‐sized, primarily littoral species were included. These results suggest that fish in European lowland lakes can be considered a metacommunity with limited dispersal along watercourse connections in particular for small‐sized species. The analysis supports that for an appropriate evaluation of spatial effects on fish community similarity, reliable estimates of local richness are required which include in particular also rare, small‐sized species occurring primarily in littoral areas. Furthermore, watercourse distance is a more reliable approximation than Euclidean distance to the real spatial dimension of fish dispersal.  相似文献   

14.
The palm (Arecaceae) community on low paleo-riverine terraces (terrace forest) in the north-western Amazon, is described, and we assessed the importance of environmental differences and geographic distance as drivers of its local (252 grain and 0–500 extent) and regional scale (5002 grain and 0.3–143 km extent) beta diversity using ordination, multiple regressions on distance matrices and Indicator Species Analysis. A total of 15,869 individuals and 37 species of palm were sampled in 10 terrace forest transects, while 3758 individuals and 21 species were sampled in two adjacent floodplain forest transects for comparison. The terrace and floodplain forest were clearly different in their diversity and floristic composition. The relative importance of geographical distance and environmental difference as controls of terrace forest beta diversity was scale dependent, with environmental differences, notably in soil moisture, dominating at local scales and geographical distance dominating at regional scales. In fact, none of the environmental factors had a significant influence on regional-scale beta diversity. The geographical distance decay in floristic similarity was markedly steeper at local scale ( −0.25 km −1) than at regional scale ( −0.003 km−1). Such a nonlinear decay is expected if simple dispersal limitation controls beta diversity. However, the absent flattening of the distance decay at the largest distances and the sub-Andean affinities of the westernmost palm communities suggest that large-scale biogeographical processes also contribute to the regional-scale beta diversity. Hereby our results indicate that not only local environment, but also dispersal limitation and biogeographical history can be important controls of the diversity and composition of local plant communities.  相似文献   

15.
An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species‐environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species‐environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species‐environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species‐environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species‐environment feedback on community assembly.  相似文献   

16.
Andrew Siefert 《Oecologia》2012,170(3):767-775
Environmental filtering and niche differentiation are processes proposed to drive community assembly, generating nonrandom patterns in community trait distributions. Despite the substantial intraspecific trait variation present in plant communities, most previous studies of trait-based community assembly have used species mean trait values and therefore not accounted for intraspecific variation. Using a null model approach, I tested for environmental filtering and niche differentiation acting on three key functional traits??vegetative height, specific leaf area (SLA), and leaf dry matter content (LDMC)??in old-field plant communities. I also examined how accounting for intraspecific variation at the among-plot and individual levels affected the detection of nonrandom assembly patterns. Tests using fixed species mean trait values provided evidence of environmental filtering acting on height and SLA and niche differentiation acting on SLA. Including plot-level intraspecific variation increased the strength of these patterns, indicating an important role of intraspecific variation in community assembly. Tests using individual trait data indicated strong environmental filtering acting on all traits, but provided no evidence of niche differentiation, although these signals may have been obscured by the effects of dispersal limitation and spatial aggregation of conspecific individuals. There was also strong evidence of nonrandom assembly of individuals within single species, with the strength of environmental filtering varying among species. This study demonstrates that, while analyses using fixed species mean trait values can provide insights into community assembly processes, accounting for intraspecific variation provides a more complete view of communities and the processes driving their assembly.  相似文献   

17.
Miriam N. Ojima  Lin Jiang 《Oikos》2017,126(5):682-691
The traditional debate on alternative community states has been over whether or not they exist. Studies of community assembly have examined the role of assembly history in driving community divergence, but the context in which assembly history becomes important is a continued topic of interest. In this study, we created communities of bacterivorous ciliated protists in laboratory microcosms and manipulated assembly history, disturbance frequency, and the presence of dispersal among local communities to investigate the mechanisms behind community divergence. Specifically, we sought to understand how the role of assembly history changed in response to disturbance, dispersal, and the combination of the two. Assembly history influenced the identity of the dominant species through priority effects, and dispersal and disturbance showed interactive effects on both alpha and beta diversity. Dispersal substantially increased alpha diversity, but only in the absence of disturbance, and it reduced beta diversity, but not in the presence of low or mixed disturbance. These results demonstrate that the role of assembly history and the strength of priority effects depend on community context, suggesting that understanding the interactions between various factors shaping community assembly is important for understanding how ecological communities are structured.  相似文献   

18.
In this study, we investigated microbial communities (bacteria and protist) in two coastal areas near the estuaries of the Liaohe (LH) River and Yalujiang (YLJ) River in the Northwestern Pacific Ocean. Due to the existence of Liaodong Peninsula and different levels of urbanization, geographical segregation and significant environmental heterogeneity were observed between these two areas. There were significantly different regional species pools and biogeographic patterns for both bacterial and protistan communities between LH and YLJ coastal areas. Species turnover was the main mechanism driving β-diversity patterns of both bacterial and protistan communities in each area. In addition, the contributed ratio of nestedness to the β-diversity patterns was significantly higher for protists compared to bacteria. Variation in regional species pools was found to be the dominant driver of differences of bacterial and protistan communities between the LH and YLJ coastal areas. For a single-studied area, local community assembly mechanisms, including heterogeneous selection and dispersal limitation, were found to shape the bacterial and protistan communities through calculation of the β-deviation index. Among them, the relative importance of heterogeneous selection and dispersal limitation on the community assembly varied according to microorganism type and habitat.  相似文献   

19.
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within‐stream scale, intermediate, among‐stream scale, and large, among‐sub‐basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within‐stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among‐sub‐basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among‐stream and among‐sub‐basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities.  相似文献   

20.
The extent to which the distribution of soil bacteria is controlled by local environment vs. spatial factors (e.g. dispersal, colonization limitation, evolutionary events) is poorly understood and widely debated. Our understanding of biogeographic controls in microbial communities is likely hampered by the enormous environmental variability encountered across spatial scales and the broad diversity of microbial life histories. Here, we constrained environmental factors (soil chemistry, climate, above‐ground plant community) to investigate the specific influence of space, by fitting all other variables first, on bacterial communities in soils over distances from m to 102 km. We found strong evidence for a spatial component to bacterial community structure that varies with scale and organism life history (dispersal and survival ability). Geographic distance had no influence over community structure for organisms known to have survival stages, but the converse was true for organisms thought to be less hardy. Community function (substrate utilization) was also shown to be highly correlated with community structure, but not to abiotic factors, suggesting nonstochastic determinants of community structure are important Our results support the view that bacterial soil communities are constrained by both edaphic factors and geographic distance and further show that the relative importance of such constraints depends critically on the taxonomic resolution used to evaluate spatio‐temporal patterns of microbial diversity, as well as life history of the groups being investigated, much as is the case for macro‐organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号