首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental competence of in vitro cultured embryos vitrified-warmed at an early cleavage stage (2- or 4, 8-cell stage) was examined by both direct transfer into recipient animals and after in vitro manipulation for chimeric mice production using embryonic stem (ES) cells. Vitrified-warmed embryos transferred at the morulae and blastocyst stages showed fetus development comparable to control embryos, although blastocyst development of vitrified-warmed embryos was significantly slower than that of controls. When vitrified-warmed early cleavage stage embryos were used for chimeric mouse production using ES cells, 1 to 10% of the injected or aggregated embryos developed into chimeric neonates and germ-line chimeric mice were obtained from all ES cell lines. This study indicates that embryos developed in vitro from vitrified-warmed embryos have equivalent competence with unvitrified embryos irrespective of stage of vitrification and that these vitrified-warmed embryos maintain adequate viability even after in vitro manipulation such as aggregation and microinjection with ES cells.  相似文献   

2.
Production of chimeric animals is often a necessity for the generation of genetically modified animals and has gained popularity in recent years in regenerative medicine for the reconstruction of xenogeneic organs. Aggregation and injection methods are generally used to produce chimeric mice. In the aggregation method, the chimeras are produced by co-culturing embryos and stem cells, and keeping them physically adhered, although it may not be an assured method for producing chimeric embryos. In the injection method, the chimeras are produced by injecting stem cells into the zona pellucida using microcapillaries; however, this technique requires a high degree of skill. This study aimed to establish a novel method for producing chimeric embryos via water-in-oil droplets that differs from conventional methods. In this study, embryonic stem cells and embryos were successfully isolated in the droplets, and the emergence of chimeric embryos was confirmed by co-culture for 6 h. Using this method, the control and operability of stem cell numbers could be regulated, and reproducibility and quantification were improved during the production of chimeric embryos. In addition to the conventional methods for producing chimeric embryos, the novel method described here could be employed for the efficient production of chimeric animals.  相似文献   

3.
Neural crest cells are embryonic, multipotent stem cells that give rise to various cell/tissue types and thus serve as a good model system for the study of cell specification and mechanisms of cell differentiation. For analysis of neural crest cell lineage, an efficient method has been devised for manipulating the mouse genome through the Cre-loxP system. We generated transgenic mice harboring a Cre gene driven by a promoter of protein 0 (P0). To detect the Cre-mediated DNA recombination, we crossed P0-Cre transgenic mice with CAG-CAT-Z indicator transgenic mice. The CAG-CAT-Z Tg line carries a lacZ gene downstream of a chicken beta-actin promoter and a "stuffer" fragment flanked by two loxP sequences, so that lacZ is expressed only when the stuffer is removed by the action of Cre recombinase. In three different P0-Cre lines crossed with CAG-CAT-Z Tg, embryos carrying both transgenes showed lacZ expression in tissues derived from neural crest cells, such as spinal dorsal root ganglia, sympathetic nervous system, enteric nervous system, and ventral craniofacial mesenchyme at stages later than 9.0 dpc. These findings give some insights into neural crest cell differentiation in mammals. We believe that P0-Cre transgenic mice will facilitate many interesting experiments, including lineage analysis, purification, and genetic manipulation of the mammalian neural crest cells.  相似文献   

4.
Ro S  Rannala B 《EMBO reports》2004,5(9):914-920
The investigation of cell lineages and clonal organization in tissues is facilitated by techniques that allow labelling of clonal cell lineages. Here, we describe a novel transgenic mouse that allows clonal cell lineages to be traced in virtually any tissue. A green fluorescent cell lineage is generated by a random mutation at an enhanced green fluorescent protein gene that carries a premature stop codon, ensuring clonality. The transgenic system allows efficient detection of mutations and stem-cell fate mapping in the epidermis using live mice, as well as in the kidney and liver post-mortem. Cell lineages that descended from single epidermal stem cells were found to be capable of generating three adjacent corneocytes using the system, providing evidence for horizontal migration of epidermal cells between epidermal proliferative units (EPUs), in contrast to the classical EPU model. The transgenic mouse system is expected to provide a novel tool for stem-cell lineage studies.  相似文献   

5.
An embryonal carcinoma (EC) cell line having the ability to form chimeric mice was isolated from embryo-derived teratocarcinomas experimentally induced in BALB/cCrSlc mice. This EC cell line, B242 g, was one of the 5 EC cell lines pre-selected based on the ability to incorporate into blastocysts by means of aggregating with 8-cell mouse embryos.
Using the B242g EC cells, the effectiveness of producing chimeras was compared between two currently available techniques, aggregation and injection, by examining chimerism of the midgestationally recovered conceptuses and live-born mice. The present result revealed that EC cells studied here were able to form chimeras more efficiently by injection as compared to aggregation method.  相似文献   

6.
Mouse transgenesis has proven invaluable for analysis of gene function and generation of human disease models. We describe here the development of a pronuclear injection-based targeted transgenesis (PITT) system, involving site-specific integration in fertilized eggs. The system was applied to two different genomic target loci to generate a series of transgenic lines including fluorescent mice, which reproducibly displayed strong, ubiquitous and stable transgene expression. We also demonstrated that knockdown mice could be readily generated by PITT by taking advantage of the reproducible and highly efficient expression system. The PITT system, which circumvents the problem of unpredictable and unstable transgene expression of conventional random-integration transgenic mice, reduces the time, cost and effort needed to generate transgenic mice, and is potentially applicable to both in vivo 'gain-of-function' and 'loss-of-function' studies.  相似文献   

7.
Ten primary clones of hybrid cells were produced by the fusion of diploid embryonic stem (ES) cells, viz., line E14Tg2aSc4TP6.3 marked by green fluorescent protein (GFP), with diploid embryonic or adult fibroblasts derived from DD/c mice. All the hybrid clones had many characteristics similar to those of ES cells and were positive for GFP. Five hybrid clones having ploidy close to tetraploidy (over 80% of cells had 76–80 chromosomes) were chosen for the generation of chimeras via injection into C57BL blastocysts. These hybrid clones also contained microsatellites marking all ES cell and fibroblast chromosomes judging from microsatellite analysis. Twenty chimeric embryos at 11–13 days post-conception were obtained after injection of hybrid cells derived from two of three clones. Many embryos showed a high content of GFP-positive descendents of the tested hybrid cells. Twenty one adult chimeras were generated by the injection of hybrid cells derived from three clones. The contribution of GFP-labeled hybrid cells was significant and comparable with that of diploid E14Tg2aSc4TP6.3 cells. Cytogenetic and microsatellite analyses of cell cultures derived from chimeric embryos or adults indicated that the initial karyotype of the tested hybrid cells remained stable during the development of the chimeras, i.e., the hybrid cells were mainly responsible for the generation of the chimeras. Thus, ES cell/fibroblast hybrid cells with near-tetraploid karyotype are able to generate chimeras at a high rate, and many adult chimeras contain a high percentage of descendants of the hybrid cells. A. A. Kruglova and E. A. Kizilova contributed equally to this work. This study was financially supported by grants from the Russian Academy of Sciences, Siberian Branch 5.2 and 14.0.  相似文献   

8.
9.
The ability of trophectoderm (TE) cells to produce chimeric mice (pluripotency) was compared with that of inner cell mass (ICM) cells. TE and ICM cells of blastocysts and hatching or hatched blastocysts derived from albino mice (CD-1, Gpi-1a/a) were aggregated with zona cut 8- to 16-cell stage embryos or injected into the blastocoele from non-albino mice (C57BL/6 x C3H/He, Gpi-1b/b). After transfer to pseudopregnant female mice, the contribution of the donor cells was examined by glucose phosphate isomerase (GPI) analysis of embryos, membrane and placenta at mid-gestation (Day 10.5 and 12.5) or by the coat color of newborn mice. In contrast to ICM cells, there was no contribution of TE cells in the conceptuses and no coat color chimeric young were obtained. After pre-labeling of TE cells with fluorescent latex microparticles, they were aggregated with embryos and the allocation of TE cells at the compacted morula and blastocyst stages was observed under a fluorescent microscope. Although the TE cells were observed attached onto the surface of the embryos at morula and blastocyst stages, unlike the ICM cells, they were not positively incorporated into the embryos. Thus, the pluripotency of TE cells from mouse blastocysts was not induced by the aggregation and injection methods.  相似文献   

10.
The woodchuck model is an informative model for studies on hepadnaviral infection. In this study, woodchuck hepatitis virus (WHV) transgenic (Tg) mouse models based on C57BL/6 mice were established to study the pathogenesis associated with hepadnaviral infection. Two lineages of WHV Tg mice, harboring the WHV wild-type genome (lineage 1217) and a mutated WHV genome lacking surface antigen (lineage 1281), were generated. WHV replication intermediates were detected by Southern blotting. DNA vaccines against WHV proteins were applied by intramuscular injection. WHV-specific immune responses were analyzed by flow cytometry and enzyme-linked immunosorbent assays (ELISAs). The presence of WHV transgenes resulted in liver-specific but sex- and age-dependent WHV replication in Tg mice. Pathological changes in the liver, including hepatocellular dysplasia, were observed in aged Tg mice, suggesting that the presence of WHV transgenes may lead to liver diseases. Interestingly, Tg mice of lineage 1281 spontaneously developed T- and B-cell responses to WHV core protein (WHcAg). DNA vaccination induced specific immune responses to WHV proteins in WHV Tg mice, indicating a tolerance break. The magnitude of the induced WHcAg-specific immune responses was dependent on the effectiveness of different DNA vaccines and was associated with a decrease in WHV loads in mice. In conclusion, sex- and age-dependent viral replication, development of autoimmune responses to viral antigens, pathological changes in the liver in WHV Tg mice, and the possibility of breaking immune tolerance to WHV transgenes will allow future studies on pathogenesis related to hepadnaviral infection and therapeutic vaccines.  相似文献   

11.
The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid(4n)embryos and produce tetraploid/diploid(4n/2n)chimeric embryos.Different electric feld intensities were tested and 2 direct current(DC)pulses of 0.9 kV/cm for 30 ls was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos.The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos,reached85.4%and 28.5%,respectively.68.18%of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization(FISH).Although the number of blastomeres in 4n blastocysts was signifcantly lower than in 2n blastocysts(P<0.05),there was no signifcant difference in developmental rates of blastocysts between 2n and 4n embryos(P>0.05),suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos.Moreover,4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos.We found that the developmental rate and cell number of blastocysts of 4-cell(4n)/4-cell(2n)chimeric embryos were signifcantly higher than those of 2-cell(4n)/4-cell(2n),4-cell(4n)/8-cell(2n),4-cell(4n)/2-cell(2n)chimeric embryos(P<0.05).Consistent with mouse chimeras,the majority of 4n cells contribute to the trophectoderm(TE),while the 2n cells are mainly present in the inner cell mass(ICM)of porcine4n/2n chimeric embryos.Our study established a feasible and effcient approach to produce porcine4n embryos and 4n/2n chimeric embryos.  相似文献   

12.
To date, cloned farm animals have been produced by nuclear transfer from embryonic, fetal, and adult cell types. However, mice completely derived from embryonic stem (ES) cells have been produced by aggregation with tetraploid embryos. The objective of the present study was to generate offspring completely derived from bovine ES-like cells. ES-like cells isolated from the inner cell mass of in vitro-produced embryos were aggregated with tetraploid bovine embryos generated by electrofusion at the 2-cell stage. A total of 77 embryo aggregates produced by coculture of two 8-cell-stage tetraploid embryos and a clump of ES-like cells were cultured in vitro. Twenty-eight of the aggregates developed to the blastocyst stage, and 12 of these were transferred to recipient cows. Six calves representing 2 singletons and 2 sets of twins were produced from the transfer of the chimeric embryos. Microsatellite analysis for the 6 calves demonstrated that one calf was chimeric in the hair roots and the another was chimeric in the liver. However, unfortunately, both of these calves died shortly after birth. Two of the placentae from the remaining pregnancies were also chimeric. These results indicate that the bovine ES-like cells used in these studies were able to contribute to development.  相似文献   

13.
Gene Expression Nervous System Atlas (GENSAT) transgenic mice express EGFP, tdTomato, or Cre recombinase in a wide range of cell types. The mice and the bacterial artificial chromosome transgenes are available from repositories (MMRRC or CHORI), thereby making these resources readily available to the research community. This resource of 1,386 transgenic lines was developed and validated for neuroscience research. However, GENSAT mice have many potential applications in other contexts including studies of development outside of the CNS. The cell type‐specific expression of fluorescent proteins in these mice has been used to identify cells in living embryos, in living embryo explants, and in stem or progenitor cell populations in postnatal tissues. The large number of fluorescent protein driver lines generated by GENSAT greatly expands the range of cell type markers that can be used for live cell sorting. In addition, the GENSAT project has generated 278 new Cre driver lines. This review provides an overview of the GENSAT lines and information for identifying lines that may be useful for a particular application. I also provide a review of the few published cases in which GENSAT mice have been used for studies of embryonic development or analysis of stem/progenitor cells in nonneural tissues. genesis 54:245–256, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
A novel technique of chimeric somatic cell cloning was applied to produce a transgenic rabbit (NT20). Karyoplasts of transgenic adult skin fibroblasts with Tg(Wap-GH1) gene construct as a marker were microsurgically transferred into one, previously enucleated, blastomere of 2-cell non-transgenic embryos, while the second one remained intact. The reconstructed embryos either were cultured in vitro up to the blastocyst stage (Experiment I) or were transferred into recipient-females immediately after the cloning procedure (Experiment II). In Experiment I, 25/102 (24.5%) embryos formed blastocysts from whole embryos and 46/102 (44.12%) embryos developed to the blastocyst stage from single non-operated blastomeres, while the reconstructed blastomeres were damaged and degenerated. Thirteen (12.7%) embryos did not exceed 3- to 4-cell stages and 18 (17.7%) embryos were inhibited at the initial 2-cell stage. Out of 14 blastocysts which were subjected to molecular analysis, the transgene was detected in the cells of 4 blastocysts. In Experiment II, 163/217 (75.0%) embryos were transferred into 9 pseudopregnant recipient-rabbits (an average of 18 embryos per recipient). Four recipient-females (44.4%) became pregnant and delivered a total of 24 (14.7%) pups. Molecular analysis confirmed that two pups (1.2%), one live and one stillborn, showed a positive transgene signal. Live transgenic rabbit NT20 appeared healthy and anatomically as well as physiologically normal. The results of our experiments showed that transgenic adult skin fibroblast cell nuclei, which have been introduced into the cytoplasmic microenvironment of single enucleated blastomeres from 2-cell stage rabbit embryos, are able to direct the development of chimeric embryos not only to the blastocyst stage but also up to term.  相似文献   

15.
常规基因剔除小鼠的获得主要是利用ES细胞的全能性先获得嵌合体小鼠,再利用:ES细胞的生殖系传递能力,通过嵌合体与野生型小鼠的交配获得杂合子小鼠.而四倍体补偿技术则可绕过嵌合体小鼠阶段,直接获得基因修饰杂合子小鼠.利用电融合技术和Piezoelectric microinjecfion显微注射技术建立了四倍体补偿技术,小鼠四倍体胚胎的获得率(电融合率)为(93.01±l.37)%,经体外培养囊胚形成率为(82.49±2.08)%.通过显微注射方法将2种129品系小鼠来源的ES细胞(CJ7和SCR012)注射到四倍体囊胚腔中,获得了完全ES细胞来源的小鼠,ES鼠的获得率分别为2.7%和8.3%.经微卫星DNA检测,成体小鼠的10个被检测组织均为129小鼠来源的.同时,也利用基因修饰的ES细胞进行了研究,获得了2种基因修饰的完全ES细胞来源的杂合子小鼠,部分小鼠具有繁殖能力,经繁育已获得了纯合子,其中凝血因子Ⅷ基因敲除小鼠获得了预期的血友病小鼠表型.上述结果说明四倍体补偿技术可应用于基因修饰小鼠的制备.  相似文献   

16.
Transplantation studies and cell lineage analyses require the ability to explicitly distinguish morphologically identical cells that have an identifiable marker indicating their origin in vivo. Several reporter mouse strains have been generated for such studies, but pancellular detection of the marker in all tissues has not been achieved. In this report, we describe the generation of transgenic mice that express enhanced green fluorescent protein (EGFP) under control of a 187 kb bacterial artificial chromosome (BAC) containing the murine ROSA26 locus, and show several advantages over existing EGFP reporter lines. It is demonstrated that EGFP is ubiquitously and reproducibly expressed from the murine BAC transgene in all organs and tissues analyzed, including the hematolymphoid compartment. Using this new reporter strain in hematopoietic cell transplantation studies, it is demonstrated that leukocytes in recipients maintain uniform transgene expression and are easily distinguished by flow cytometric analysis of live cells. The results suggest that the ROSA26 BAC is an efficient strategy for expressing complex transgene cassettes in vivo.  相似文献   

17.
XUXIN  SUMIOSUGANO 《Cell research》1999,9(3):201-208
Primordial germ cells (PGCs),as precursors of mammalian germ lineage,have been gaining more attention as a new resource of pluripotent stem cells,which bring a great possibility to study developmental events of germ cell in vitro and at animal level.EG4 cells derived from 10.5 days post coitum (dpc) PGCs of 129/svJ strain mouse were established and maintained in an undifferentiated state.With an attempt to study the differentiation capability of EG4 cells with a reporter protein:green fluorescence protein,and the possible application of EG4 cells in the research of germ cell development,we have generated several EG4-GFP cell lines expressing enhanced green fluorescence protein (EGFP) and still maintaining typical characteristics of pluripotent stem cells.Then,the differentiation of EG4-GFP cells in vitro as well as their developmental fate in chimeric embryos which were produced by aggregating EG4-GFP cells to 8-cell stage embryos were studied.The results showed that EG4 cells carrying green fluorescence have a potential use in the research of germ cell development and other related studies.  相似文献   

18.
Transgenic (Tg) mice expressing full-length bovine prion protein (BoPrP) serially propagate bovine spongiform encephalopathy (BSE) prions without posing a transmission barrier. These mice also posed no transmission barrier for Suffolk sheep scrapie prions, suggesting that cattle may be highly susceptible to some sheep scrapie strains. Tg(BoPrP) mice were also found to be susceptible to prions from humans with variant Creutzfeldt-Jakob disease (CJD); on second passage in Tg(BoPrP) mice, the incubation times shortened by 30 to 40 days. In contrast, Tg(BoPrP) mice were not susceptible to sporadic, familial, or iatrogenic CJD prions. While the conformational stabilities of bovine-derived and Tg(BoPrP)-passaged BSE prions were similar, the stability of sheep scrapie prions was higher than that found for the BSE prions but lower if the scrapie prions were passaged in Tg(BoPrP) mice. Our findings suggest that BSE prions did not arise from a sheep scrapie strain like the one described here; rather, BSE prions may have arisen spontaneously in a cow or by passage of a scrapie strain that maintains its stability upon passage in cattle. It may be possible to distinguish BSE prions from scrapie strains in sheep by combining conformational stability studies with studies using novel Tg mice expressing a chimeric mouse-BoPrP gene. Single-amino-acid substitutions in chimeric PrP transgenes produced profound changes in incubation times that allowed us to distinguish prions causing BSE from those causing scrapie.  相似文献   

19.
Six newly derived hybrid mouse embryonic stem (ES) cell lines and two inbred ES cell lines were tested for their ability to produce completely ES cell-derived mice by aggregation of ES cells with tetraploid embryos. Forty-five ES cell-tetraploid pups were generated from six hybrid ES cell lines and no pups from two inbred ES cell lines. These pups were found to have increased embryonic and placental weights than control mice. Twenty-two pups survived to adulthood and produced normal offsprings, and the other 23 pups died of several reasons including respiratory distress, abdomen ulcer-like symptoms, and foster failure. The 22 adult ES cell-tetraploid mice were completely ES cell-derived as judged by coat color and germline transmission, only two of them was found to have tetraploid component in liver, blood, and lung as analyzed by microsatellite loci. Our data suggested that genetic heterozygosity is a crucial factor for postnatal survival of ES cell-tetraploid mice, and tetraploid embryo aggregation using hybrid ES cells is a simple and efficient procedure for immediate generation of targeted mouse mutants from genetically modified ES cell clones, in contrast to the standard protocol, which involves the production of chimeras and several breeding steps.  相似文献   

20.
Cell fate mapping techniques which can label clonal cell lineages are of importance because they allow one to investigate the distribution and types of daughter cells arising from single precursor cells. Thus, the potential of precursor cells to generate various types of descendent cells can be studied at the single-cell level. The stop-EGFP transgenic mouse carries a premature stop codon-containing enhanced green fluorescent protein (EGFP) gene as a target gene for mutations. A cell having undergone a mutation at the premature stop codon and its descendant cell lineage will express EGFP, thus a clonal cell lineage can be traced in vivo using a fluorescent microscope. Using the stop-EGFP mouse, stem cell clonal lineages in the mouse dorsal epidermis can be investigated in vivo and repeated analyses of the same cell lineages can be performed over time. In vivo imaging studies possible with the stop-EGFP mouse provide new insights into the structure of epidermal proliferative units (EPUs). The stop-EGFP system provides a novel tool for investigating clonal cell lineages in developmental studies as well as in stem cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号