首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of 6-(2-furyl)-9-(p-methoxybenzyl)purines carrying a variety of substituents in the 2- or 8-position have been synthesized and their ability to inhibit growth of Mycobacterium tuberculosis in vitro has been determined. It is demonstrated that sterical hindrance in the purine 8-position reduces activity and that C-8 should be unsubstituted. In the purine 2-position small, hydrophobic substituents are beneficial. The electronic properties of the 2-substituents appear to have only a minor influence on bioactivity. The compounds studied exhibit low toxicity toward mammalian cells (VERO cells) and are essentially inactive toward Staphylococcus aureus and Escherichia coli. The most active and selective antimycobacterial in the series detected to date is the novel 2-methyl-6-furyl-9-(p-methoxybenzyl)purine with MIC=0.20 microg/mL against M. tuberculosis and IC(50) against VERO cells >62.5 microg/mL. Also the novel 2-fluoro analog and the previously known 2-chloro compound, both with MIC=0.39 microg/mL, are highly interesting drug candidates.  相似文献   

2.
Phenoxypropionic acid derivatives (Ia-s) with an imidazo[1,2-a]pyridine moiety were synthesized and their herbicidal activities were examined. The activities were affected dramatically by the substituents on the imidazo[1,2-a]pyridine ring, and good substituents to enhance the herbicidal activity were a cyano group at the 3-position and a chlorine atom at the 6-position. Among the compounds, n-propyl 2-[4-(6-chloro-3-cyano-2-imidazo[1,2-a]pyridinyloxy)phenoxy]propionate(Iq) was most active against gramineous weeds and the activity was comparable to that of the commercial herbicide fluazifop-butyl.  相似文献   

3.
A comparative study on the substrate recognition was conducted successfully in Novozym 435-mediated acylation of various 2′- or 5-substituted nucleosides with acyl donors carrying different aliphatic chain lengths (C6, C10, and C14). The unexpected results revealed that the physicochemical property of the substituents (such as the size, hydrophobicity, and substitutional position) in nucleosides profoundly influenced the behavior of the enzyme. The different substrate-binding patterns derived from the existence of the substituents in 2′- or 5-position of the nucleosides could account for this. Moreover, another possible factor governing the regioselectivity might be ascribed to the interaction between the substituent and acyl donor in addition to the geometrical configuration of the lipase's active site.  相似文献   

4.
Dihydroorotate dehydrogenases (DHODs) oxidize dihydroorotate (DHO) to orotate (OA) using the FMN prosthetic group to abstract a hydride equivalent from C6 and a protein residue (cysteine for class 1A DHODs) to deprotonate C5. The fundamental question of whether the scission of the two DHO C-H bonds is concerted or stepwise was addressed for the class 1A enzyme from Lactococcus lactis by determining kinetic isotope effects (KIEs) on flavin reduction in anaerobic stopped-flow experiments. Isotope effects were determined at two pH values. At pH 7.0, KIEs were approximately 2-fold for DHO labeled singly at the 5-position or the 6-position and approximately 4-fold for DHO labeled at both the 5- and 6-positions. At pH 8.5, the KIEs observed for DHO labeled at the 5-position, the 6-position, and the 5- and 6-positions were approximately 2-, approximately 3-, and approximately 6-fold, respectively. These isotope effects are consistent with a concerted oxidation of DHO. The pH dependence of reduction was also determined, and a pKa of 8.3 was found. This pKa can be attributed to the ionization of the active site cysteine which deprotonates C5 of DHO during the reaction. To further investigate the importance of the active site base, two site-directed mutants were also studied: Cys130Ala (removal of the active site base) and Cys130Ser (replacement with the active site base used by class 2 DHODs). Both mutant enzymes exhibited binding affinities for DHO similar to that of the wild-type enzyme. Reduction of both mutants was extremely slow compared to that of the wild type; the rate of reduction increased with pH, showing no sign of a plateau. Interestingly, double-deuterium isotope effects on the Cys130Ser mutant also showed a concerted mechanism for flavin reduction.  相似文献   

5.
E B Skibo  J H Gilchrist  C H Lee 《Biochemistry》1987,26(11):3032-3037
Quinazolin-4(3H)-one derivatives substituted at the 6- and/or 7-position were studied as electronic probes of substrate oxidation by buttermilk xanthine oxidase. Since the enzyme active site possesses dimensional tolerance, the substituents exert an electronic effect rather than a steric effect on the catalytic parameters for oxidation. This feature permitted a Hammett plot to be made for quinazoline-oxygen substrate activity. The concave downward nature of this plot indicates that the rate-determining step for oxidation changes when electron-withdrawing substituents are placed on the substrate. This plot and kinetic isotope effects obtained with 2-deuterio derivatives of the substrates indicate the following: (i) oxidation involves nucleophile transfer to the C(2) center in concert with hydride transfer to the molybdenum center, and (ii) the formation of oxidized product is a three-step process, i.e., Michaelis complex formation, oxidation, and hydrolysis of the oxidized substrate-enzyme adduct. The role of the nucleophile in oxidation appears to be to increase the electron density in the substrate and thereby facilitate hydride transfer. The implication of this study is that similar electronic probes may be designed to study other purine-utilizing enzymes possessing a dimensionally tolerant active site.  相似文献   

6.
7.
We studied the structural determinants of binding affinity and efficacy of adenosine receptor (AR) agonists. Substituents at the 2-position of adenosine were combined with N(6)-substitutions known to enhance human A(3)AR affinity. Selectivity of binding of the analogues and their functional effects on cAMP production were studied using recombinant human A(1), A(2A), A(2B), and A(3)ARs. Mainly sterically small substituents at the 2-position modulated both the affinity and intrinsic efficacy at all subtypes. The 2-cyano group decreased hA(3)AR affinity and efficacy in the cases of N(6)-(3-iodobenzyl) and N(6)-(trans-2-phenyl-1-cyclopropyl), for which a full A(3)AR agonist was converted into a selective antagonist; the 2-cyano-N(6)-methyl analogue was a full A(3)AR agonist. The combination of N(6)-benzyl and various 2-substitutions (chloro, trifluoromethyl, and cyano) resulted in reduced efficacy at the A(1)AR. The environment surrounding the 2-position within the putative A(3)AR binding site was explored using rhodopsin-based homology modeling and ligand docking.  相似文献   

8.
A series of neonicotinoids analogues of hexahydroimidazo[1,2-alpha]pyridine were modified at 5-, 6-, and 7-positions, and their insecticidal activities were evaluated. Introducing a methyl or ethyl at 7-position increased the insecticidal activities, while other substituents decreased activities. When alkyl substituents were introduced to 7-position, the insecticidal activities against Pea aphids decreased in the order methyl (7a)>ethyl (7b)>n-butyl (7e)>phenyl (7f)>n-propyl (7c)>iso-propyl (7d), p-NO(2)-phenyl (7g). Modifications at 5-, 6- or both at 6- and 7-positions with methyl or ethyl were unfavorable to activities. Interestingly, introducing methyl to 7-position not only increased insecticidal activities against pea aphids, but also show higher insecticidal activities than imidacloprid against imidacloprid-resistant brown planthopper.  相似文献   

9.
Stereoselective glycosylation of 2,5,6-trichlorobenzimidazole (1b), 2-bromo-5,6-dichlorobenzimidazole (1c), 5,6-dichlorobenzimidazole (1d), 5,6-dichlorobenzimidazole-2-thione (1e), 5,6-dichloro-2-(methylthio)benzimidazole (1f), 2-(benzylthio)-5,6-dichlorobenzimidazole (1g), and 2-chloro-5,6-dimethylbenzimidazole (1h) with 2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranosyl chloride was achieved to give the desired beta nucleosides 2b-h. Subsequent deprotection afforded the corresponding free beta-D-2-deoxyribosides 3b-h. The 2-methoxy derivative 3i was synthesized by the treatment of 2b with methanolic sodium methoxide. Displacement of the 2-chloro group of 2b with lithium azide followed by a removal of the protective groups gave the 2-azido-5,6-dichlorobenzimidazole derivative (5). The 2-amino derivative (6) was obtained by hydrogenolysis of 5 over Raney nickel. 5,6-Dichloro-2-isopropylamino-1-(2-deoxy-beta-D-erythro- pentofuranosyl)benzimidazole (10) was prepared using 2'-deoxyuridine (7), N-deoxyribofuranosyl transferase and 1d followed by functionalization of the C2 position. Antiviral evaluation of target compounds established that compounds 3b and 3c were active against human cytomegalovirus (HCMV) at non-cytotoxic concentrations. The activity of these 2-deoxy ribosides, however, was less than the activity of the parent riboside, 2,5,6-trichloro-1-beta-D-ribofuranosylbenzimidazole (TCRB). Compared to TCRB, 3b and 3c were somewhat more cytotoxic and active against herpes simplex virus type 1. Compounds 3d-i with other substituents in the 2-position were inactive against both viruses and non-cytotoxic. In contrast, compounds with amine substituents in the 2-position (5, 6, 10) were active against HCMV albeit less so than TCRB. These results establish that 2-deoxy-D-ribosyl benzimidazoles are less active against the DNA virus HCMV than are the corresponding D-ribosides.  相似文献   

10.
The adenosine kinase inhibitory (AKI) activity of 5-iodo and diaryl analogues of tubercidin is quantitatively analyzed using Fujita-Ban and Hansch type analyses. The Fujita-Ban analysis being a non-parametric approach assigned the highest contribution to Cl at the X-position, C6H4-4-Cl, C6H5, 2-furanyl and I at the Y-position and CH2NH2 and CH3 at the Z-position. In addition, a OH substituent at the C-position also emerged as a better choice possibly due to its engagement in hydrogen bonding with some active site function. Thus a compound having Cl, C6H4-4-Cl, CH2NH2 and OH respectively at X-, Y-, Z- and C-positions is predicted to have a potency nearly 1.5 orders of magnitude higher than the most potent compound of the parent data set. The Hansch type analysis, on the other hand, is a parametric approach and is carried out on two sub-sets of original compounds. This sub-division is based on size and nature of the substituents present at the X- and Y-positions. For the compounds in the first sub-set the derived significant correlation equation suggested that the substituent at the Y-position exhibiting a higher field effect and a substituent such as Cl and CH2NH2 at X- and Z-positions, respectively, are important for a compound to show increased AKI activity. Thio/alkylthio at X and CH2OCH3 at Z, on the other hand, lead to a detrimental effect. Similarly for the compounds in the second sub-set, the derived significant correlation equation showed that a substituent at the X-position having a higher negative field effect, a substituent at the Y-position having bulky groups and the C-position occupied by a OH group are essential for enhancement of the activity of a compound.  相似文献   

11.
9-Benzylpurines with a variety of substituents in the 2-, 6- and/or 8-position have been prepared and screened for antimycobacterial effects. High inhibitory activity against Mycobacterium tuberculosis was found for 9-benzylpurines carrying a phenylethynyl-, trans-styryl or aryl substituents in the 6-position and generally chlorine in the 2-position tends to increase activity.  相似文献   

12.
Trisubstituted pyridazines were synthesized and evaluated as in vitro inhibitors of p38MAPK. The most active isomers were those possessing an aryl group alpha and a heteroaryl group beta relative to the nitrogen atom in the 2-position of the central pyridazine. Additionally, substitution in the 6-position of the central pyridazine with a variety of dialkylamino substituents afforded a set of inhibitors having good (p38 IC50 1-20 nM) in vitro activity.  相似文献   

13.
The native flavin, FAD, was removed from chicken liver xanthine dehydrogenase and milk xanthine oxidase by incubation with CaCl2. The deflavoenzymes, still retaining their molybdopterin and iron-sulfur prosthetic groups, were reconstituted with a series of FAD derivatives containing chemically reactive or environmentally sensitive substituents in the isoalloxazine ring system. The reconstituted enzymes containing these artificial flavins were all catalytically active. With both the chicken liver dehydrogenase and the milk oxidase, the flavin 8-position was found to be freely accessible to solvent. The flavin 6-position was also freely accessible to solvent in milk xanthine oxidase, but was significantly less exposed to solvent in the chicken liver dehydrogenase. Pronounced differences in protein structure surrounding the bound flavin were indicated by the spectral properties of the two enzymes reconstituted with flavins containing ionizable -OH or -SH substituents at the flavin 6- or 8-positions. Milk xanthine oxidase either displayed no preference for binding of the neutral or anionic flavin (8-OH-FAD) or a slight preference for the anionic form of the flavin (6-hydroxy-FAD, 6-mercapto-FAD, and possibly 8-mercapto-FAD). On the other hand, the chicken liver dehydrogenase had a dramatic preference for binding the neutral (protonated) forms of all four flavins, perturbing the pK of the ionizable substituent greater than or equal to 4 pH units. These results imply the existence of a strong negative charge in the flavin binding site of the dehydrogenase, which is absent in the oxidase.  相似文献   

14.
Antitumor agents that bind to tubulin and disrupt microtubule dynamics have attracted considerable attention in the last few years. To extend our knowledge of the thiazole ring as a suitable mimic for the cis-olefin present in combretastatin A-4, we fixed the 3,4,5-trimethoxyphenyl at the C4-position of the thiazole core. We found that the substituents at the C2- and C5-positions had a profound effect on antiproliferative activity. Comparing compounds with the same substituents at the C5-position of the thiazole ring, the moiety at the C2-position influenced antiproliferative activities, with the order of potency being NHCH3 > Me ? N(CH3)2. The N-methylamino substituent significantly improved antiproliferative activity on MCF-7 cells with respect to C2-amino counterparts. Increasing steric bulk at the C2-position from N-methylamino to N,N-dimethylamino caused a 1–2 log decrease in activity. The 2-N-methylamino thiazole derivatives 3b, 3d and 3e were the most active compounds as antiproliferative agents, with IC50 values from low micromolar to single digit nanomolar, and, in addition, they are also active on multidrug-resistant cell lines over-expressing P-glycoprotein. Antiproliferative activity was probably caused by the compounds binding to the colchicines site of tubulin polymerization and disrupting microtubule dynamics. Moreover, the most active compound 3e induced apoptosis through the activation of caspase-2, -3 and -8, but 3e did not cause mitochondrial depolarization.  相似文献   

15.
The bacteriostatic activity of kojic acid derivatives, where various substituents are introduced into the 2- and/or 7-positions was analyzed in terms of the physicochemical characteristics of the substituents using the method developed by Hansch and his co-workers. Analyses show that 1) activity is attributable to the neutral form of the molecule in the medium, 2) the site of action seems to be in a region close to the bacterial cell surface, and 3) the higher the hydrophobicity of the substituents at the 7-position and the greater the electron withdrawal from the 3-hydroxyl group, the stronger the activity.  相似文献   

16.
Potential receptor imaging agents based on Tc-99m for the in vivo visualization of the peripheral benzodiazepine receptor (PBR) have been designed on the basis of the information provided by the previously published structure-affinity relationship studies, which suggested the existence of tolerance to voluminous substituents in the receptor area interacting with 3-position of the quinoline nucleus of 2-quinolinecarboxamides 5. In the first step of the investigation, the stereoelectronic features of the above-indicated receptor area were also probed by means of 4-phenyl-3-[(1-piperazinyl)methyl]-2-quinolinecarboxamide derivatives bearing different substituents on the terminal piperazine nitrogen atom (compounds 6a-f). The structure-affinity relationship data confirmed the existence of a tolerance to bulky lipophilic substituents and stimulated the design of bifunctional ligands based on the 4-phenyl-3-[(1-piperazinyl)methyl]-2-quinolinecarboxamide moiety (compounds 6h,j,k,m). The submicromolar PBR affinity of rhenium complexes 6j,m suggests that the presence of their metal-ligand moieties with encaged rhenium is fairly compatible with the interaction with the PBR binding site. Thus, in order to obtain information on the in vivo behavior of these bifunctional ligands, (99m)Tc-labeled compounds 6h,k were synthesized and evaluated in preliminary biodistribution and single photon emission tomography (SPET) studies. The results suggest that both tracers do not present a clear preferential distribution in tissues rich in PBR, probably because of their molecular dimensions, which may hamper both the intracellular diffusion toward PBR and the interaction with the binding site.  相似文献   

17.
A novel and highly efficient route to new indanoyl isoleucine conjugates is described, which allows a wide range of substituents to be attached to the 6-position of the indanoyl moiety. We report the synthesis of conjugates with methyl, methoxy, propoxy, allyloxy, pentoxy, and 2-(2-methoxy-ethoxy)-ethoxy 6-position substituents. Preliminary biological activities of the novel compounds with significantly enhanced water solubility were determined using the Lima bean (Phaseolus lunatus) volatile bioassay. The compounds induce variable volatile patterns, and structure-activity relationships show an ability to differentially induce separate pathways leading to secondary metabolites.  相似文献   

18.
A library of 35 cis-1-benzoyl-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolines was prepared. The compounds bore various substitutuents on the benzoyl ring, at the 4-position of the phenylamino ring and at the 6-position of the tetrahydroquinoline ring. The compounds were assayed for their ability to cause expression of a reporter gene downstream of an ecdysone response element in a mammalian cell line engineered to express the ecdysone receptor from Aedes aegypti. In general, compounds with small lipophilic substituents at the meta and para-positions of the benzoyl ring and hydrogen or fluorine at the 4-position of the phenylamino ring and the 6-position of the tetrahydroquinoline ring were the most potent.  相似文献   

19.
Derivatives of 1-[2-(4-carboxyphenoxy)ethyl]-3-dodecanoylindole-2-carboxylic acid (4) with modified substituents at the indole-1-position were synthesized and evaluated for their ability to inhibit the arachidonic acid release in human platelets mediated by the cytosolic phospholipase A(2). One of the most active compounds obtained was 26 with an IC(50) of 0.44 microM.  相似文献   

20.
A new series of potent tricyclic pyrazole-based Chk1 inhibitors are described. Analogues disubstituted on the 6- and 7-positions show improved Chk1 inhibition potency compared with analogues with a single substituent on either the 6- or 7-position. Based on the lead compound 4'-(6,7-dimethoxy-2,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-biphenyl-4-ol (2), detailed SAR studies on the 6- and 7-positions were performed. 3'-morpholin-4'-yl-propoxy, pyridin-4'-ylmethoxy, pyridin-3'-ylmethoxy, 2'-(5'-ethyl-pyridin-2'-yl)-ethoxy, pyridin-2'-ylethoxy, (6'-methyl-pyridin-2'-yl)-propoxyethoxy, 2',3'-dihydroxyl-1'-yl-propoxy, and tetrahydro-furan-3'-yloxy have been identified as the best groups on the 6-position when the 7-position is substituted with methoxyl group. Pyridin-2'-ylmethoxy and pyridin-3'-ylmethoxy have been identified as the best substituents at the 7-position while the 6-position bearing methoxyl group. These compounds significantly potentiate the cytotoxicity of DNA-damaging antitumor agents in a cell-based assay and efficiently abrogate the doxorubicin-induced G2/M and the camptothecin-induced S checkpoints, suggesting that their potent biological activities are mechanism-based through Chk1 inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号