首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Insertion of the transposable element Ty at the ADH4 locus results in increased levels of a new alcohol dehydrogenase (ADH) activity in Saccharomyces cerevisiae. The DNA sequence of this locus has been determined. It contains a long open reading frame which is not homologous to the other ADH isozymes that have been characterized in S. cerevisiae nor does it show obvious homology to Drosophila ADH. The hypothetical ADH does, however, show strong homology to the sequence of an iron-activated ADH from the bacterium Zymomonas mobilis. Thus ADH4 appears to encode an ADH structural gene which, along with the Zymomonas enzyme, may define a new family of alcohol dehydrogenases.Now The Plant Cell Research Institute, Inc., 6560 Trinity Court, Dublin, CA 94568, USA  相似文献   

2.
The ethanologenic bacterium Zymomonas mobilis ZM4 is of special interest because it has a high ethanol yield. This is made possible by the two alcohol dehydrogenases (ADHs) present in Z. mobilis ZM4 (zmADHs), which shift the equilibrium of the reaction toward the synthesis of ethanol. They are metal-dependent enzymes: zinc for zmADH1 and iron for zmADH2. However, zmADH2 is inactivated by oxygen, thus implicating zmADH2 as the component of the cytosolic respiratory system in Z. mobilis. Here, we show crystal structures of zmADH2 in the form of an apo-enzyme and an NAD+-cofactor complex. The overall folding of the monomeric structure is very similar to those of other functionally related ADHs with structural variations around the probable substrate and NAD+ cofactor binding region. A dimeric structure is formed by the limited interactions between the two subunits with the bound NAD+ at the cleft formed along the domain interface. The catalytic iron ion binds near to the nicotinamide ring of NAD+, which is likely to restrict and locate the ethanol to the active site together with the oxidized Cys residue and several nonpolar bulky residues. The structures of the zmADH2 from the proficient ethanologenic bacterium Z. mobilis, with and without NAD+ cofactor, and modeling ethanol in the active site imply that there is a typical metal-dependent catalytic mechanism.  相似文献   

3.
In the gram negative, obligately ethanologenic bacterium Zymomonas mobilis a pyruvate dehydrogenase complex was identified and the complex was enriched from cell extracts. This multienzyme complex is responsible for acetyl-CoA biosynthesis from pyruvate. No activities of related multienzyme complexes, 2-ketoglutarate dehydrogenase and branched chain keto acid dehydrogenase, could be detected.  相似文献   

4.
The variable cyanide-sensitivity of the iron-containing alcohol dehydrogenase isoenzyme (ADH II) of the ethanol-producing bacterium Zymomonas mobilis was studied. In aerobically grown permeabilized cells, cyanide caused gradual inhibition of ADH II, which was largely prevented by externally added NADH. Cyanide-sensitivity of ADH II was highest in cells grown under conditions of vigorous aeration, in which intracellular NADH concentration was low. Anaerobically grown bacteria, as well as those cultivated aerobically in the presence of cyanide, maintained higher intracellular NADH levels along with a more cyanide-resistant ADH II. It was demonstrated that cyanide acted as a competitive inhibitor of ADH II, competing with nicotinamide nucleotides. NADH increased both cyanide-resistance and oxygen-resistance of ADH II.  相似文献   

5.
Several levan hyperproducing mutants of Zymomonas mobilis strains were selected by mutagenesis with N-methyl-N-nitro-nitrosoguanidine and caffeine. Highest levan production (41 g l–1) was obtained with a mutant strain HL 29 in a culture medium containing 200 g sucrose l–1 and 0.5 g (NH4)2SO4 l–1 stored at 7 °C for 29 days. This is the first report describing the levan synthesis by Z. mobilis at 7 °C.  相似文献   

6.
The Zymomonas mobilis gene sacC that encodes the extracellular sucrase (protein B46) was cloned and expressed in Escherichia coli. the gene was found to be present downstream to the already described levansucrase gene sacB in the cloned chromosomal fragment of Z. mobilis. The expression product was different from SacB and exhibited sucrase but not levansucrase activity; therefore, SacC behaves like a true sucrase. Expression of sacC in E. coli JM109 and XL1 was very low; overexpression was observed in E. coli BL21 after induction of the T7 polymerase expression system with IPTG. Subcellular fractionation of the E. coli clone carrying plasmid pLSS2811 showed that more than 70% of the sucrase activity could be detected in the cytoplasmic fraction, suggesting that the enzyme was soluble and not secreted in E. coli. The nucleotide sequence analysis of sacC revealed an open reading frame 1239 bp long coding for a 413 amino acid protein with a molecular mass of 46 kDa. The first 30 deduced amino acids from this ORF were identical with those from the N-terminal sequence of the extracellular sucrase (protein B46) purified from Z. mobilis ZM4. No leader peptide sequence could be identified in the sacC gene. The amino acid sequence of SacC showed very little similarity to those of other known sucrases, but was very similar to the levansucrases of Z. mobilis (61.5%), Erwinia amylovora (40.2%) and Bacillus subtilis (25.6%).  相似文献   

7.
The intracellular sucrase SacA from Zymomonas mobilis was purified to homogeneity from a recombinant E. coli strain containing the SacA gene under an expression system. The protein was monomeric with a molecular mass of 58 kDa. The sucrase activity was maximal at 25 °C and thermal stability of the purified protein was low (50% recovery after 30 min at 46 °C ). The activation energy was low at 33 kJ mol–1. Maximum activity was at pH 6.5. Activity was strongly inhibited (>99%) by SH blocking reagents and reducing agents slightly (10–60%) increased the activity of purified SacA. The sucrase showed a low K M (42 mM) and k cat (125 s–1) which indicated its very low efficiency for sucrose hydrolysis. A mutant strain of Z. mobilis not able to grow on sucrose was isolated. This strain (ZM4S) lacked the two sucrases SacB and SacC but SacA was present in the intracellular fraction. Therefore, SacA alone is unable to allow growth Z. mobilis on sucrose.  相似文献   

8.
By thin layer chromatographic, gas-liquid chromatographic, and mass spectrometric methods 1,2,3,4-tetrahydroxypentane-29-hopane (THBH) was shown to occur in Zymomonas mobilis. This compound contributed up to 20% to the total lipids.The fatty acid pattern and the content of hopanoids (hopene, hopanol, and THBH) were determined in batch and continuous cultures. In late exponential cells from batch cultures the relative amount of palmitic acid was increased partially at the expense of cis-vaccenic acid, when the initial glucose concentrations were increased. In a batch culture, THBH reached a maximum value in the early exponential growth phase.In an anaerobic continuous culture with a low glucose feed concentration, the THBH content and the relative amount of cis-vaccenic acid were low. The contribution of both compounds increased strongly with increasing glucose feed concentrations (i.e. at higher steady-state ethanol concentrations). The same result was found with aerobic continuous cultures which produced significant amounts of acetaldehyde and acetic acid, in addition to ethanol and carbon dioxide.It was concluded that stability and permeability of the cytoplasmic membrane of the ethanol producing bacterium Z. mobilis was regulated by variations in the distribution of hopanoids and fatty acids.Abbreviations 14:0 myristic acid - 16:0 palmitic acid - 18:1 cisvaccenic acid - THBH 1,2,3,4-tetrahydroxypentane-29-hopane  相似文献   

9.
The narrow substrate range of Zymomonas mobilis CP4 has been extended previously to include metabolism of the pentose sugar, xylose, by Zhang et al. (Science 267: 240–243). The strain CP4(pZB5) co-ferments both glucose and xylose in mixed sugar fermentations, however glucose is utilized preferentially. The present work reports the isolation of a new mutant from CP4(pZB5) which displays an altered carbon substrate preference. The mutant, CP4(pZB5) M1-2, metabolizes xylose more rapidly than glucose in mixed glucose/xylose media. Sequence data analysis revealed mutations in both the glucose facilitator (glf) and glucokinase (glk) genes.  相似文献   

10.
The over-expressed extracellular sucrase (SacC) of Zymomonas mobilisfrom a recombinant Escherichia coli (pZSP62) carrying the sacC gene was purified partially by repeated cycles of freezing and thawing. This method separated the highly expressed recombinant protein from the bulk of endogenous E. coli proteins. The enzyme was further purified 14 fold with a 55% yield from the cellular extract of E. coli by hydroxyapatite chromatography. The purified enzyme had a Mr of 46 kDa by SDS-PAGE. Its km value for sucrose was 86 mM and was optimal at pH 5.0 and at 36°C.  相似文献   

11.
The sequence of the putative endoglucanase gene ZMO1086 in the genome of Zymomonas mobilis showed a 40% similarity with known bacterial endoglucanase genes. The upstream region of this putative gene revealed the presence of characteristic promoter (-10 and -35 regions) and a Shine-Dalgarno region. The putative endoglucanase gene was poorly expressed from the native promoter of Z. mobilis and therefore the putative endoglucanase gene was cloned and expressed in Escherichia coli BL21. The overexpressed gene product CelA was purified to homogeneity and the optimal activity was observed at 30 degrees C and pH 6 respectively.  相似文献   

12.
The influence of the flocculating agent was studied in the performance (measured by microbial growth and ethanol production) of a non flocculent strain of Zymomonas mobilis, as well as the potentiality of the sedimentation process in the separation of the biomass from the fermentation broth. Among the flocculating agents studied, it was verified that both tannin and the polyelectrolyte yielded good results with regard to cellular performance. However, with regard to sedimentation tannin is more adequate to be used in processes involving Zymomonas mobilis.  相似文献   

13.
14.
We have characterized two cDNA clones from the nematode Caenorhabditis elegans that display similarity to the alcohol dehydrogenase (ADH) gene family. The nucleotide sequences of these cDNAs predict that they encode Zn-containing long-chain ADH enzymes. Phylogenetic analysis suggests that one is most similar to dimeric class III ADHs found in diverse taxa; the other is most similar to the tetrameric forms of ADH previously described only in fungi. Correspondence to: J.J. Collins  相似文献   

15.
16.
Previous research in our laboratory comparing the three-dimensional structural elements of two highly homologous alcohol dehydrogenases, one from the mesophile Clostridium beijerinckii (CbADH) and the other from the extreme thermophile Thermoanaerobacter brockii (TbADH), suggested that in the thermophilic enzyme, an extra intrasubunit ion pair (Glu224-Lys254) and a short ion-pair network (Lys257-Asp237-Arg304-Glu165) at the intersubunit interface might contribute to the extreme thermal stability of TbADH. In the present study, we used site-directed mutagenesis to replace these structurally strategic residues in CbADH with the corresponding amino acids from TbADH, and we determined the effect of such replacements on the thermal stability of CbADH. Mutations in the intrasubunit ion pair region increased thermostability in the single mutant S254K- and in the double mutant V224E/S254K-CbADH, but not in the single mutant V224E-CbADH. Both single amino acid replacements, M304R- and Q165E-CbADH, in the region of the intersubunit ion pair network augmented thermal stability, with an additive effect in the double mutant M304R/Q165E-CbADH. To investigate the precise mechanism by which such mutations alter the molecular structure of CbADH to achieve enhanced thermostability, we constructed a quadruple mutant V224E/S254K/Q165E/M304R-CbADH and solved its three-dimensional structure. The overall results indicate that the amino acid substitutions in CbADH mutants with enhanced thermal stability reinforce the quaternary structure of the enzyme by formation of an extended network of intersubunit ion pairs and salt bridges, mediated by water molecules, and by forming a new intrasubunit salt bridge.  相似文献   

17.
A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex.  相似文献   

18.
In the pyruvate dehydrogenase complex (PDHC) of Zymomonas mobilis the beta subunit of the pyruvate dehydrogenase (E1p) as well as the acetyltransferase (E2p) contain an N-terminal lipoyl domain. Both lipoyl domains were acetylated in vitro using 2-14C-pyruvate as a substrate, demonstrating that both lipoyl domains can accept acetyl groups from the E1 component. As previously shown the structural genes (pdhA alpha beta, pdhB, lpd) encoding the pyruvate dehydrogenase complex of Z. mobilis are located in two distinct gene clusters, pdhA alpha beta and pdhB-orf2-lpd (U. Neveling et al. (1998) J. Bacteriol. 180, 1540-1548). Analysis of pdh gene expression using lacZ fusions revealed that the DNA fragments upstream of pdhA alpha, pdhB and lpd each have promoter activities. These pdh promoter activities were 7-30-fold higher in Z. mobilis than in Escherichia coli.  相似文献   

19.

Background

Pseudomonas putida KT2440 is endowed with a variant of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTSNtr), which is not related to sugar transport but believed to rule the metabolic balance of carbon vs. nitrogen. The metabolic targets of such a system are largely unknown.

Methods

Dielectric breakdown of P. putida cells grown in rich medium revealed the presence of forms of the EIIANtr (PtsN) component of PTSNtr, which were strongly associated to other cytoplasmic proteins. To investigate such intracellular partners of EIIANtr, a soluble protein extract of bacteria bearing an E epitope tagged version of PtsN was immunoprecipitated with a monoclonal anti-E antibody and the pulled-down proteins identified by mass spectrometry.

Results

The E1 subunit of the pyruvate dehydrogenase (PDH) complex, the product of the aceE gene, was identified as a major interaction partner of EIIANtr. To examine the effect of EIIANtr on PDH, the enzyme activity was measured in extracts of isogenic ptsN+/ptsNP. putida strains and the role of phosphorylation was determined. Expression of PtsN and AceE proteins fused to different fluorescent moieties and confocal laser microscopy indicated a significant co-localization of the two proteins in the bacterial cytoplasm.

Conclusion

EIIANtr down-regulates PDH activity. Both genetic and biochemical evidence revealed that the non-phosphorylated form of PtsN is the protein species that inhibits PDH.

General significance

EIIANtr takes part in the node of C metabolism that checks the flux of carbon from carbohydrates into the Krebs cycle by means of direct protein–protein interactions with AceE. This type of control might connect metabolism to many other cellular functions. This article is part of a Special Issue entitled: Systems Biology of Microorganisms.  相似文献   

20.
Previously, using γ-irradiation treatment, we isolated a mutant strain of Klebsiella pneumoniae (named GEM167) that showed high-level ethanol production from glycerol. In the present study, in an effort to enhance ethanol production, we used a deletion of the lactate dehydrogenase gene to engineer a mutant strain incapable of lactate synthesis. In the ΔldhA mutant of GEM167, the production of ethanol was significantly increased from 21.5 g/l to 28.9 g/l and from 0.93 g/(l h) to 1.2 g/(l h). Introduction of the Zymomonas mobilis pdc and adhII genes encoding pyruvate decarboxylase and aldehyde dehydrogenase, respectively, further improved the ethanol production level from glycerol to 31.0 g/l; this is the highest level reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号