首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-kappaB was up-regulated. Interference analysis of NF-kappaB in A549 cells showed that knock down of NF-kappaB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-kappaB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer.  相似文献   

2.
3.
Interferon-alpha (IFN-alpha) has been used for the last 20 years in the maintenance therapy of multiple myeloma (MM), though it is only effective in some patients. Congruent with this, IFN-alpha induces apoptosis in some MM cell lines. Understanding the mechanism of IFN-alpha-induced apoptosis could be useful in establishing criteria of eligibility for therapy. Here we show that IFN-alpha-induced apoptosis in the MM cell lines U266 and H929 was completely blocked by a specific inhibitor of Jak1. The mTOR inhibitor rapamycin mitigated apoptosis in U266 but potentiated it in H929 cells. IFN-alpha induced PS exposure, DeltaPsi(m) loss and pro-apoptotic conformational changes of Bak, but not of Bax, and was fully prevented by Mcl-1 overexpression in U266 cells. IFN-alpha treatment caused the release of cytochrome c from mitochondria to cytosol and consequently, a limited proteolytic processing of caspases. Apoptosis induced by IFN-alpha was only slightly prevented by caspase inhibitors. Levels of the BH3-only proteins PUMA and Bim increased during IFN-alpha treatment. Bim increase and apoptosis was prevented by transfection with the siRNA for Bim. PUMA-siRNA transfection reduced electroporation-induced apoptosis but had no effect on apoptosis triggered by IFN-alpha. The potentiating effect of rapamycin on apoptosis in H929 cells was associated to an increase in basal and IFN-alpha-induced Bim levels. Our results indicate that IFN-alpha causes apoptosis in myeloma cells through a moderate triggering of the mitochondrial route initiated by Bim and that mTOR inhibitors may be useful in IFN-alpha maintenance therapy of certain MM patients.  相似文献   

4.
A large series of alkyl C-glycosides was synthesized from D-glucal or D-galactal. These compounds were screened against the human promyelocytic leukemia cell line (HL60), showing significant activity and apoptosis. Up to 13 C-glucopyranosides, but no C-galacto- or C-mannopyranosides, exhibited inhibitory concentrations (IC(50) values) below 20 microM, five of them in the range 4-8 microM. Preliminary structure-activity relationships were established.  相似文献   

5.
6.
Benzamide riboside (BR) is a novel anticancer agent exhibiting pronounced activity against several human tumor cell lines via the inhibition of inosine 5'-monophosphate dehydrogenase (IMPDH), thereby restricting the biosynthesis of guanylates. Although it has been demonstrated that BR inhibits IMPDH and induces apoptosis, however, not much attention has been directed to the mechanism of apoptosis induction by this compound. The purpose of the present investigation was to investigate the mechanism of cytotoxicity induced by BR in human lung cancer cells. Non-small cell lung cancer [NSCLC] is the most prevalent type of lung cancer especially in India, and displays resistance to anticancer treatment. The results reveal that BR at a dose of 50 microM induces apoptosis in NSCLC H520 cells. This was ascertained by alteration in cellular morphology, TUNEL assay and flow cytometry. While Bax protein level was unaffected there was down regulation of anti-apoptotic Bcl-2 protein and up regulation of p53 as observed by Western blotting. Induction of apoptosis was accompanied by significant increase in caspase-3 activity. BR is a potent growth inhibitory pro-drug rationally synthesized to mimic NAD and inhibits PARP at high concentrations when assayed in permeabilized leukemic cells. Our observations showed that increased caspase-3 activity was accompanied by PARP cleavage. We also observed release of cytochrome c from mitochondria to the cytosol whereas no change was seen in the levels of apoptosis inducing factor (AIF). These findings indicate that BR induces apoptosis in H520 cells via the intrinsic mitochondrial pathway.  相似文献   

7.
In single mouse macrophages stimulated by platelet-activating factor (PAF), the intracellular calcium concentration (Cai) monitored with fura-2 at room temperature presents a biphasic increase, including a transient and a more sustained component. After pulse administration of PAF, the first phase lasts for a few seconds and reaches a peak value of 0.5-1 microM Ca2+ at high PAF concentration. The amplitude of this peak is independent of extracellular Ca2+ concentration, suggesting that the initial Ca2+ transient is due to the release of Ca2+ from intracellular stores. The second phase of the response lasts for several minutes; its maximum amplitude is reached 1-2 min after the brief initial PAF stimulation. This phase, suppressed in zero external Ca2+ and increased in 10 mM Ca2+, is probably due to influx of Ca2+ through the plasma membrane. This secondary Ca2+ increase is blocked by 10-50 microM lanthanum. At low PAF concentration, the initial Ca2+ transient is not followed by a second phase, showing that the initial rises of Ca2+ and of its activator (presumably inositol trisphosphate) are not sufficient to trigger the second phase of Ca2+ increase.  相似文献   

8.
Rapid CD4+ lymphocyte depletion due to cell death caused by HIV infection is one of the hallmarks of acquired immunodeficiency syndrome. HIV-1 viral protein R (Vpr) induces apoptosis and is believed to contribute to CD4+ lymphocyte depletion. Thus, identification of cellular factors that potentially counteract this detrimental viral effect will not only help us to understand the molecular action of Vpr but also to design future antiviral therapies. In this report, we describe identification of elongation factor 2 (EF2) as such a cellular factor. Specifically, EF2 protein level is responsive to vpr gene expression; it is able to suppress Vpr-induced apoptosis when it is overproduced beyond its physiological level. EF2 was initially identified through a genome-wide multicopy suppressor search for Vpr-induced apoptosis in a fission yeast model system. Overproduction of fission yeast Ef2 completely abolishes Vpr-induced cell killing in fission yeast. Similarly, overexpression of the human homologue of yeast Ef2 in a neuroblastoma SKN-SH cell line and two CD4+ H9 and CEM-SS T-cell lines also blocked Vpr-induced apoptosis. The anti-apoptotic property of EF2 is demonstrated by its ability to suppress caspase 9 and caspase 3-mediated apoptosis induced by Vpr. In addition, it also reduces cytochrome c release induced by Vpr, staurosporine and TNFα. The fact that overproduction of EF2 blocks Vpr-induced cell death both in fission yeast and human cells, suggested that EF2 posses a highly conserved anti-apoptotic activity. Moreover, the responsive elevation of EF2 to Vpr suggests a possible host innate antiviral response.  相似文献   

9.
The effects of thrombin and histamine on protein phosphorylation in intact cultured human umbilical vein endothelial cells (HUVEC) prelabeled with 32PO4 were investigated. Incubation of HUVEC with either thrombin or histamine, agonists known to induce rapid transient increases in intracellular calcium levels in HUVEC, caused a rapid reversible increase in the phosphorylation of a protein with a Mr = 100,000 independent of the presence of extracellular calcium. Immunological and biochemical studies demonstrated that this Mr = 100,000 protein is elongation factor 2 (EF-2), a substrate previously shown to be phosphorylated by calcium/calmodulin-dependent protein kinase III (Nairn, A. C., and Palfrey, H. C. (1987) J. Biol. Chem. 262, 17299-17303). EF-2 is crucial for protein synthesis because it catalyzes the translocation of peptidyl-tRNA on the ribosome. Phosphoamino acid analysis of the EF-2 immunoprecipitated from HUVEC revealed that all of the thrombin-stimulated phosphorylation occurred on threonine. EF-2 was also phosphorylated when HUVEC were treated with the calcium ionophore, ionomycin. Phosphorylation of EF-2 was not increased by treatment with D-Phe-Pro-Arg-chloromethyl ketone thrombin, phorbol dibutyrate, forskolin, or 8-bromo-cGMP. The transient nature of the phosphorylation of EF-2 is consistent with it having a role in mediating some of the transient effects of thrombin and histamine on endothelial cell protein synthesis and functional capabilities.  相似文献   

10.
mTOR, the mammalian target of rapamycin, has been widely implicated in signals that promote cell cycle progression and survival in cancer cells. Rapamycin, which inhibits mTOR with high specificity, has consequently attracted much attention as an anti-cancer therapeutic. Rapamycin suppresses phosphorylation of S6 kinase at nano-molar concentrations, however at higher micro-molar doses, rapamycin induces apoptosis in several human cancer cell lines. While much is known about the effect of low dose rapamycin treatment, the mechanistic basis for the apoptotic effects of high-dose rapamycin treatment is not understood. We report here that the apoptotic effects of high-dose rapamycin treatment correlate with suppressing phosphorylation of the mTOR complex 1 substrate, eukaryotic initiation factor 4E (eIF4E) binding protein-1 (4E-BP1). Consistent with this observation, ablation of eIF4E also resulted in apoptorsis in MDA-MB 231 breast cancer cells. We also provide evidence that the differential dose effects of rapamycin are correlated with partial and complete dissociation of Raptor from mTORC1 at low and high doses, respectively. In contrast with MDA-MB-231 cells, MCF-7 breast cancer cells survived rapamycin-induced suppression of 4E-BP1 phosphorylation. We show that survival correlated with a hyper-phosphorylation of Akt at S473 at high rapamycin doses, the suppression of which conferred rapamycin sensitivity. This study reveals that the apoptotic effect of rapamycin requires doses that completely dissociate Raptor from mTORC1 and suppress that phosphorylation of 4E-BP1 and inhibit eIF4E.  相似文献   

11.
iASPP was an inhibitory member of ASPP family and could specifically inhibit the apoptotic function of p53. iASPPsv was identified by our lab as the short isoform of iASPP, which encoded a 407aa protein and highly matched the carboxyl terminus of iASPP. In this study, iASPPsv was stably transfected into the breast cancer cell line MCF-7 by means of lentivirus to explore the effects of iASPPsv on biological functions of MCF-7. Thymocytes from iASPP/iASPPsv transgenic mice were also used to explore the effects of iASPP/iASPPsv on cell biological function. The results demonstrated that iASPPsv antagonized the growth inhibition induced by etoposide (VP-16) in MCF-7 cells. iASPPsv also down-regulated proapoptotic genes (Bax, Puma and Noxa) expression to inhibit apoptosis caused by VP-16. Moreover, iASPP and iASPPsv could both help the thymocytes of transgenic mice to resist the growth inhibition and apoptosis caused by dexamethasone (Dex) or VP-16. At the same time, DNA double strand break damage accumulated in either iASPPsv MCF-7 cells or iASPP/iASPPsv thymocytes. These findings showed that iAPSS/iASPPsv reduced the growth inhibition and apoptosis induced by Dex or VP-16, with DNA damage accumulating which might promote the pathogenesis and/or progression of cancer.  相似文献   

12.
Gastric cancer cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and the resistance mechanism is not fully understood. In human gastric cancer MGC803 and BGC823 cells, TRAIL induces insulin-like growth factor-1 receptor (IGF-1R) pathway activation. Treatment with IGF-1R inhibitor OSI-906 or small interfering RNAs against IGF-1R, prevents IGF-1R pathway activation and increases TRAIL-induced apoptosis. The TRAIL-induced IGF-1R pathway activation is promoted by IGF-1R translocation into lipid rafts. Moreover, the translocation of IGF-1R into lipid rafts is regulated by Casitas B-lineage lymphoma b (Cbl-b). Taken together, TRAIL-induced IGF-1R activation antagonizes TRAIL-induced apoptosis by Cbl-b-regulated distribution of IGF-1R in lipid rafts.  相似文献   

13.
Collaborator of ARF (CARF) was cloned as an ARF-interacting protein and shown to regulate the p53-p21(WAF1)-HDM2 pathway, which is central to tumor suppression via senescence and apoptosis. We had previously reported that CARF inhibition in cancer cells led to polyploidy and caspase-dependent apoptosis, however, the mechanisms governing this phenomenon remained unknown. Thus, we examined various cell death and survival pathways including the mitochondrial stress, ataxia telangiectasia mutated (ATM)-ATR, Ras-MAP kinase and retinoblastoma cascades. We found that CARF is a pleiotropic regulator with widespread effects; its suppression affected all investigated pathways. Most remarkably, it protected the cells against genotoxicity; CARF knockdown elicited DNA damage response as evidenced by increased levels of phosphorylated ATM and γH2AX, leading to induction of mitotic arrest and eventual apoptosis. We also show that the CARF-silencing-induced apoptosis in vitro translates to in vivo. In a human tumor xenograft mouse model, treatment of developing tumors with short hairpin RNA (shRNA) against CARF via an adenovirus carrier induced complete suppression of tumor growth, suggesting that CARF shRNA is a strong candidate for an anticancer reagent. We demonstrate that CARF has a vital role in genome preservation and tumor suppression and CARF siRNA is an effective novel cancer therapeutic agent.  相似文献   

14.
We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.  相似文献   

15.
16.
The antitumor effects of silibinin are of increasing interest, though its mechanism is not yet clear. The goal of this study was to clarify the mechanism of silibinin-induced cell death in the A431 human epidermoid carcinoma cell line. We used a cell viability assay, flow cytometry, nitric oxide (NO) assay, and western blotting to examine relationships between silibinin, NO generation and apoptosis in A431 cells. Silibinin inhibited A431 cell growth in a dose-dependent manner, inducing mitochondrial damage, and apoptosis at a high dose. At the same time, high dose silibinin increased NO levels in A431 cells and the endothelial nitric oxide synthase (eNOS) inhibitor NG-nitro-L-arginine methylester (L-NAME) attenuated silibinin-induced cell growth inhibition. By western blotting, silibinin caused increased eNOS phosphorylation in the mitochondria. The AMP-activated protein kinase inhibitor compound C significantly decreased p-eNOS expression, while blocking eNOS did not affect p-AMPK levels, suggested that AMPK acted upstream of eNOS. This study showed that silibinin increased NO levels in A431 cells by activating the AMPK–eNOS pathway, leading to mitochondrial dysfunction and apoptosis. In this mechanism of action, mitochondrial eNOS played an important role. The results provided new understanding of the functions of intracellular NO.  相似文献   

17.
Interferon-alpha (IFNalpha) can induce apoptosis, a process regulated by a complex network of cell factors. Among these, eukaryotic initiation factor-5A (eIF-5A) is peculiar because its activity is modulated by the post-translational formation of the amino acid hypusine. Here we report the effects of IFNalpha and epidermal growth factor (EGF) on apoptosis and eIF-5A activity in human epidermoid oropharyngeal KB and lung H1355 cancer cells. We found that 48-h exposure to 1000 and 2000 IU/ml IFNalpha induced about 50% growth inhibition and apoptosis in H1355 and KB cells, respectively, and the addition of EGF completely antagonized this effect. When IFNalpha induced apoptosis, a hyperactivation of MEK-1 and ERK signalling and a decrease of the hypusine-containing form and, thus, of eIF-5A activity were recorded. The latter effect was again antagonized by the addition of EGF to IFNalpha-pretreated cells, probably through the activation of the EGF-->ERK-dependent pathway, since the addition of the specific MEK-1 inhibitor PD098059 abrogated the recovery of intracellular hypusine content induced by EGF in IFNalpha-pretreated cancer cells. Subsequently, we evaluated if the hypusine synthesis inhibitor (and eIF-5A inactivator) N1-guanyl-1,7-diaminoheptane (GC7) synergized with IFNalpha in the induction of cell growth inhibition and apoptosis. The analysis of the isobologram of IFNalpha and GC7 demonstrated a strong synergism between the two drugs in inducing cell growth inhibition. We also found that GC7 and IFNalpha had a synergistic effect on apoptosis. These data suggest that the apoptosis induced by IFNalpha could be regulated by eIF-5A that, therefore, could represent a useful target for the potentiation of IFNalpha antitumor activity.  相似文献   

18.
Highly purified peptide elongation factor 1 from rabbit reticulocytes liberates the terminal phosphate from [gamma-32P]GTP and incorporates it into its own protein. Approximately one phosphate residue becomes bound by one molecule of the factor. Only the eEF-1 alpha subunit of the factor (Mr 53 000) becomes phosphorylated as revealed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate followed by autoradiography and by the incubation of [gamma-32P]GTP with individual subunits of the elongation factor separated by chromatofocusing in the presence of 5 M urea. The phosphorylation also takes place, though to a lesser extent, if the factor is incubated with Na2H32PO4, probably due to the presence of endogenous GTP bound in the molecule of the factor. The content of endogenous GTP in various factor preparations was 0.21-0.43 mol/mol factor. Phosphorylation of the peptide elongation factor is ribosome-independent, acid-labile and apparently autocatalytic since no other proteins are required for this reaction. Preincubation of the factor with GTP or with inorganic phosphate results in the phosphorylation of the factor and is followed by an enhanced binding of phenylalanyl-tRNA to 80S ribosomes in the presence of poly(U). This is accompanied by a dephosphorylation of the factor protein and thus the reversible autophosphorylation of the factor apparently activates its binding site for aminoacyl-tRNA. This is supported by the observation that sodium fluoride, which inhibits the dephosphorylation of the factor, blocks the factor-catalyzed binding of aminoacyl-tRNA to ribosomes. The incorporation of phosphate into factor protein also inhibits the formation of an eEF-1 X GDP complex, which is inactive in protein synthesis. Thus GDP liberated by the GTPase activity of the factor cannot affect its binding site for aminoacyl-tRNA. This may be the other reason for the enhanced activity of the phosphorylated factor. The autocatalytic GTP-dependent phosphorylation of the peptide elongation factor 1 apparently modifies its function and may thus play a regulatory role in protein synthesis.  相似文献   

19.
EF-1a binds aminoacyl-tRNA to the ribosome with the hydrolysis of GTP; the complex facilitates the exchange of GDP for GTP to initiate another round of elongation. To examine the subunit structure of EF-1 and phosphorylation by protein kinase CKII, recombinant , , and subunits from rabbit were expressed in E. coli and the subunits were reconstituted into partial and complete complexes and analyzed by gel filtration. To determine the availability of the and subunits for phosphorylation by CKII, the subunits and the reconstituted complexes were examined as substrates for CKII. Formation of the nucleotide exchange complex increased the rate of phosphorylation of the subunit and reduced the Km, while addition of to or the complex inhibited phosphorylation by CKII. However, a had little effect on phosphorylation of . Thus, the and subunits in EF-1 were differentially phosphorylated by CKII, in that phosphorylation of was altered by association with other subunits, while the site on was always available for phosphorylation by CKII. From the availability of the subunits for phosphorylation by CKII and the composition of the reconstituted partial and complete complexes, a model for the subunit structure of EF-1 consisting of (22)2 is proposed and discussed.  相似文献   

20.
Li Y  Zhang B  Wang X  Yan H  Chen G  Zhang X 《Amino acids》2011,41(4):923-932
Lung cancer is still difficult to treat by current chemotherapeutic procedures. We recently found that MVL, an anti-HIV lectin from blue-green algae Microcystis viridis, also has antitumor activity. The objective of this study was to investigate apoptosis-inducing activity of recombinant MVL (R-MVL) and proteomic changes in A549 cells, and to identify the molecular pathways responsible for the anti-cancer action of R-MVL. We found that R-MVL induces A549 cells apoptosis in a dose-dependent manner by using MTT assay, fluorescent microscope (FM) and flow cytometry (FCM), and the IC50 was calculated to be 24.12 μg/ml. Subsequently, 7 altered proteins in R-MVL-treated A549 cells were identified, including upregulated aldehyde dehydrogenase 1 and β-actin, and five downregulated proteins: heat shock protein 90, heat shock 60, plastin 3, tropomyosin 3, and β-tubulin. Further bioinformatics analysis predicted the potential pathways for R-MVL to induce apoptosis of A549 cells. In conclusion, this is the first report to investigate anti-cancer activity of R-MVL and its mechanism of action by proteomics analysis. Our observations provide potential therapeutic targets for lung cancer inhibitor intervention and implicated the development of novel anti-cancer therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号