首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A functional polymorphism in the promoter region of the serotonin transporter (5-HTTLPR) gene has been associated with variation in anxiety and hypothalamus-pituitary-adrenal (HPA) axis function in humans and rhesus macaques. Individuals carrying the short allele are at a higher risk for developmental psychopathology, and this risk is magnified in short allele carriers who have experienced early life stress. This study investigated the relationship between 5-HTTLPR allelic variation, infant abuse, and behavioral and hormonal responses to stress in rhesus macaques. Subjects were 10 abusive mothers and their infants, and 10 nonabusive mother-infant pairs. Mothers and infants were genotyped for the rh5-HTTLPR, and studied in the first 6 months of infant life. For mothers and infants, we measured social group behavior, behavioral responses to handling procedures, and plasma concentrations of ACTH and cortisol under basal conditions and in response to stress tests. The proportion of individuals carrying the short rh5-HTTLPR allele was significantly higher among abusive mothers than controls. Among mothers and infants, the short allele was associated with higher basal cortisol levels and greater hormonal stress responses in the infants. In addition, infants who carried the short rh5-HTTLPR allele had higher anxiety scores than infants homozygous for the long allele. The rh5-HTTLPR genotype also interacted with early adverse experience to impact HPA axis function in the infants. These results are consistent with those of previous studies which demonstrate associations between serotonergic activity and anxiety and stress reactivity, and add additional evidence suggesting that genetic variation in serotonergic function may contribute to the occurrence of abusive parenting in rhesus macaques and modulate emotional behavior and HPA axis function.  相似文献   

2.
Serotonin transporter (5-HTT) expression patterns may contribute to the risk for adverse psychological outcomes following early life stress. The present study investigated whether two types of early life stress, maternal and social aggression, and a serotonin transporter gene promoter polymorphism ( rh5-HTTLPR ) predicted lower post-stressor peripheral blood mononuclear cell (PBMC) 5-HTT expression in infant rhesus macaques. We further probed the relationships among these factors and infant behavioral disinhibition within a stressful situation. Fifty-three infants residing with mothers in large, complex social groups were observed over the first 12 postnatal weeks, during which time the rate of aggression received by the infant from their mothers and social group members was recorded. At 90–120 days of age, infants underwent a 25-h maternal separation/biobehavioral assessment, which included standardized behavioral assessments and blood sampling. Infants' rh5-HTTLPR genotypes were determined, and infant 5-HTT expression was quantified from PBMCs collected 8 h after separation. Receipt of aggression from the mother, but not from social group members, was associated with lower post-stressor 5-HTT expression. Lower post-stressor 5-HTT expression, but not receipt of aggression, was associated with disinhibited behavior during assessment. Rh5-HTTLPR genotype was unrelated to any measure. We conclude that 5-HTT regulation is linked with specific, presumably stressful early experiences in infant rhesus macaques. Further, 5-HTT expression predicted behavioral disinhibition, presumably via parallel processes that operate in the brain.  相似文献   

3.

Background

Serotonin signaling influences social behavior in both human and nonhuman primates. In humans, variation upstream of the promoter region of the serotonin transporter gene (5-HTTLPR) has recently been shown to influence both behavioral measures of social anxiety and amygdala response to social threats. Here we show that length polymorphisms in 5-HTTLPR predict social reward and punishment in rhesus macaques, a species in which 5-HTTLPR variation is analogous to that of humans.

Methodology/Principal Findings

In contrast to monkeys with two copies of the long allele (L/L), monkeys with one copy of the short allele of this gene (S/L) spent less time gazing at face than non-face images, less time looking in the eye region of faces, and had larger pupil diameters when gazing at photos of a high versus low status male macaques. Moreover, in a novel primed gambling task, presentation of photos of high status male macaques promoted risk-aversion in S/L monkeys but promoted risk-seeking in L/L monkeys. Finally, as measured by a “pay-per-view” task, S/L monkeys required juice payment to view photos of high status males, whereas L/L monkeys sacrificed fluid to see the same photos.

Conclusions/Significance

These data indicate that genetic variation in serotonin function contributes to social reward and punishment in rhesus macaques, and thus shapes social behavior in humans and rhesus macaques alike.  相似文献   

4.
The serotonin system underlies a wide variety of behavioral traits and its dysregulation is the cause of numerous neuropsychiatric disorders. Among genes involved in the system, the serotonin transporter (SERT) is integral and has been repeatedly shown to be associated with disease as well as being a primary drug target. In addition to promoter region variation, we identify here variation in a regulatory region in the 3' untranslated region (UTR) of the SERT gene in both humans and rhesus macaques. We comprehensively survey the 3' UTR of SLC6A4 in Indian-origin rhesus macaques to identify three single nucleotide polymorphisms (SNPs) creating two haplotypes, both derived from an ancestral sequence, that represent the vast majority of the alleles in the population. Through the use of a luciferase reporter gene assay, we are able to show that not only do these alleles have differential effects on gene expression, modulated through changes in messenger RNA stability, but that different commonly occurring SNPs in the human 3' UTR also have similar effects. This finding not only offers additional insight into the regulation, and thus dysregulation, of SERT expression, but also suggests the role of natural selection in maintaining both high and low SERT expression levels broadly across populations of multiple primate species.  相似文献   

5.
6.
Data suggest that the serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the pathogenesis of multiple neuropsychiatric disorders and may also be involved in smoking behaviour since nicotine increases brain serotonin secretion. It is known that smoking behaviour is influenced by both genetic and environmental factors. The present review examines the role of the serotonin transporter gene (5-HTT) in smoking behaviour and investigating studies that showed association of 5-HTT gene with smoking. This study discusses a polymorphism which has been investigated by many researchers, as the bi-allelic insertion/deletion polymorphism in the 5- flanking promoter region (5-HTTLPR). This gene has received considerable attention in attempts to understand the molecular determinants of smoking. Therefore, in the present study, the relationship between genetic polymorphism of serotonin transporter in smoking behaviour is reviewed considering the interactive effect of genetic factors.  相似文献   

7.
Genetic variation in the human serotonin system has long been studied because of its functional consequences and links to various neuropsychiatric and behavior‐related disorders. Among non‐human primates, the common marmosets (Callithrix jacchus) and tufted capuchins monkeys (Cebus apella) are becoming increasingly used as models to study the effects of genes, environments, and their interaction on physiology and complex behavior. In order to investigate the independent functions of and potential interactions between serotonin‐related genes, anxiety and neuropsychiatric disorders, we analyzed the presence and variability of the serotonin transporter gene‐linked polymorphic region (5‐HTTLPR) in marmoset and capuchin monkeys. By PCR and using heterologous primers from the human sequence, we amplified and then sequenced the corresponding 5‐HTT region in marmosets and capuchins. The resulting data revealed the presence of a tandem repeat sequence similar to that described in humans, but unlike humans and other Old World primates, no variable length alleles were detected in these New World monkeys, suggesting that if serotonin transporter is involved in modulating behavior in these animals it does so through different molecular mechanisms. Am. J. Primatol. 74:1028‐1034, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
In humans and other animals, behavioral responses to threatening stimuli are an important component of temperament. Among children, extreme behavioral inhibition elicited by novel situations or strangers predicts the subsequent development of anxiety disorders and depression. Genetic differences among children are known to affect risk of developing behavioral inhibition and anxiety, but a more detailed understanding of genetic influences on susceptibility is needed. Nonhuman primates provide valuable models for studying the mechanisms underlying human behavior. Individual differences in threat-induced behavioral inhibition (freezing behavior) in young rhesus monkeys are stable over time and reflect individual levels of anxiety. This study used the well-established human intruder paradigm to elicit threat-induced freezing behavior and other behavioral responses in 285 young pedigreed rhesus monkeys. We examined the overall influence of quantitative genetic variation and tested the specific effect of the serotonin transporter promoter repeat polymorphism. Quantitative genetic analyses indicated that the residual heritability of freezing duration (behavioral inhibition) is h 2 = 0.384 ( P  = 0.012) and of 'orienting to the intruder' (vigilance) is h 2 = 0.908 ( P  = 0.00001). Duration of locomotion and hostility and frequency of cooing were not significantly heritable. The serotonin transporter polymorphism showed no significant effect on either freezing or orienting to the intruder. Our results suggest that this species could be used for detailed studies of genetic mechanisms influencing extreme behavioral inhibition, including the identification of specific genes that are involved in predisposing individuals to such behavior.  相似文献   

9.
Modulation of serotonin transporter (5-HTT) function causes changes in affective behavior, both in humans and rodents. Stressful life events likewise affect emotional behavior. In humans, a low-expressing genetic 5-htt variant, the s allele of the 5-htt linked promoter region, has been associated with increased risk for depression only where there was a history of stressful life events. To investigate this gene by environment interaction in mice, we compared the effects of inescapable shocks on the behavior of wild-type (5-htt+/+), heterozygote (5-htt+/-) and serotonin transporter deficient (5-htt-/-) mice. Inescapable shocks induce behavioral changes including a shock escape deficit, in a subsequent test when escape is possible. Confirming a gene by environment interaction, we found that stress increases escape latencies in a gene-dose dependent manner (5-htt-/->5-htt+/->5-htt +/+), where as there were no differences among the genotypes in the unstressed condition. The vulnerability to increased escape latency could not be accounted for by enhanced fear learning, as 5-htt-/- mice did not show heightened fear conditioning. The interaction of 5-htt genotype and stress appeared to produce a selective behavioral vulnerability, because no interaction of 5-htt genotype and stress was observed in other measures of anxiety and depression-linked behavior, including the open field, novelty suppressed feeding, and forced swim tests. We replicated prior findings that the 5-htt-/- displays heightened anxiety and depression-like behavior at baseline (unstressed condition). In conclusion, our data offer the possibility for future investigation of the neural basis underlying 5-htt genotype-by-stress interaction shown here.  相似文献   

10.
This study investigated whether somatic markers mediate the effect of serotonin transporter genotype on Iowa Gambling Task (IGT) performance. Participants (N = 135) were genotyped for the insertion/deletion and single-nucleotide (rs25531) polymorphisms in the promoter region of the serotonin transporter gene (5-HTTLPR). The results of mediation analyses indicated that skin conductance responses that anticipated IGT card selections partially (i.e. 42% of the total effect) mediated the effect of genotype on IGT performance. In comparison with high-functioning 5-HTTLPR genotypes, the low-functioning genotypes were associated with higher total IGT scores. This suggests that the higher synaptic availability of serotonin, associated with the low-functioning 5-HTTLPR genotypes, may confer differential susceptibility to decision making under risk, and that almost half of this effect is explained by facilitated somatic markers during IGT.  相似文献   

11.
5-羟色胺转运体(5-HTT)在神经精神心理正常功能的维持及疾病的发生和发展中起重要作用。5-HTT的表达能力减低或消失的小鼠(称为:5-HTT敲除小鼠)表现出许多行为的改变,例如:焦虑类似行为增多、对应激更加敏感和攻击性行为减少。这些行为的改变有的与携带5-HTTLPR短等位基因的人很相似。因此5-HTT敲除小鼠被作为研究5-HTTLPR多态性导致情感性精神障碍发病机制的动物模型。本文主要就5-HTT敲除小鼠的5-HT浓度和代谢、下丘脑-垂体-肾上腺皮质轴以及对其他神经递质转运体影响的分子和细胞改变进行综述。  相似文献   

12.

Background

Impulsivity has been associated with serotonergic system functions. However, few researchers have investigated the relationship between a polymorphism in the promoter of the serotonin transporter gene (5-HTTLPR) and the different components of impulsivity in a non-clinical population. The aim of this study was to investigate the relationship between a polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and the different components of impulsivity in a non-clinical population.

Methodology/Principal Findings

We administered two neuropsychological tests, the Continuous Performance Task and the Iowa Gambling Task, to 127 healthy participants to measure their levels of motor, attentional and non-planning impulsivity. Then, these participants were grouped by genotype and gender, and their scores on impulsivity measures were compared. There were no significant differences between group scores on attentional, motor and non-planning impulsivity.

Conclusions/Significance

Our results suggest that 5-HTTLPR genotype is not significantly associated with subsets of impulsive behavior in a non-clinical sample when measured by neuropsychological tests. These findings are discussed in terms of the sensitivity of neuropsychological tests to detect impulsivity in a non-clinical population and the role of gender and race in the relationship between the 5-HTTLPR and impulsivity.  相似文献   

13.
14.
15.
Culture–gene coevolutionary theory posits that cultural values have evolved, are adaptive and influence the social and physical environments under which genetic selection operates. Here, we examined the association between cultural values of individualism–collectivism and allelic frequency of the serotonin transporter functional polymorphism (5-HTTLPR) as well as the role this culture–gene association may play in explaining global variability in prevalence of pathogens and affective disorders. We found evidence that collectivistic cultures were significantly more likely to comprise individuals carrying the short (S) allele of the 5-HTTLPR across 29 nations. Results further show that historical pathogen prevalence predicts cultural variability in individualism–collectivism owing to genetic selection of the S allele. Additionally, cultural values and frequency of S allele carriers negatively predict global prevalence of anxiety and mood disorder. Finally, mediation analyses further indicate that increased frequency of S allele carriers predicted decreased anxiety and mood disorder prevalence owing to increased collectivistic cultural values. Taken together, our findings suggest culture–gene coevolution between allelic frequency of 5-HTTLPR and cultural values of individualism–collectivism and support the notion that cultural values buffer genetically susceptible populations from increased prevalence of affective disorders. Implications of the current findings for understanding culture–gene coevolution of human brain and behaviour as well as how this coevolutionary process may contribute to global variation in pathogen prevalence and epidemiology of affective disorders, such as anxiety and depression, are discussed.  相似文献   

16.
Serotonin has been repeatedly indicated as a biological marker of behavior. In particular, the serotonin transporter gene, SLC6A4, has been the focus of a large body of research. Interestingly, both rhesus macaques (Macaca mulatta) and humans have independently evolved a number of shared polymorphisms for this gene, which is indicative of parallel evolution between the two species. However, little is known about the evolution of this gene, particularly within macaques. Although there are several hypotheses as to the adaptive values of various polymorphisms, few authors have gone beyond theoretical discussion. Here, we examined the genetic variation in SLC6A4 within and between several species of macaques and investigate whether selection has played a significant role in its evolutionary history. In addition, we assayed the promoter region polymorphism, 5‐HTTLPR, which is known to play a significant role in regulating both serotonin turnover and behavior. In examining the distribution of the 5‐HTTLPR polymorphism, we identified significant differences between Indian and Chinese populations of Macaca mulatta; furthermore, we discovered its presence in Macaca cyclopis, which has not been described before. In regard to the evolutionary history of SLC6A4, we found little evidence for selection and conclude that SLC6A4 largely evolved through neutral processes, possibly due to its potential role in regulating behavioral plasticity. However, we also found very low levels of linkage between the coding regions and 5‐HTTLPR. Because we limited evolutionary analyses to the coding regions, it is possible that the promoter region shows a distinct evolutionary history from SLC6A4. Am J Phys Anthropol 153:605–616, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The function of serotonin transporters (SERTs) is related to mood regulation. Mice with deficient or reduced SERT function (SERT knockout mice) show several behavioral changes, including increased anxiety-like behavior, increased sensitivity to stress, and decreases in aggressive behavior. Some of these behavioral alterations are similar to phenotypes found in humans with short alleles of polymorphism in the 5-hydroxytryptamine (5-HT) transporter-linked promoter region (5-HTTLPR). Therefore, SERT knockout mice can be used as a tool to study 5-HTTLPR-related variations in personality and may be the etiology of affective disorders. This article focuses on the cellular and molecular alterations in SERT knockout mice, including changes in 5-HT concentrations and its metabolism, alterations in 5-HT receptors, impaired hypothalamic-pituitary-adrenal gland axis, developmental changes in the neurons and brain, and influence on other neurotransmitter transporters and receptors. It also discusses the possible relationships between these alterations and the behavioral changes in these mice. The knowledge provides the foundation for understanding the cellular and molecular mechanisms that mediate the SERT-related mood regulation, which may have significant impact on understanding the etiology of affective disorders and developing better therapeutic approaches for affective disorders.  相似文献   

18.
Humans differ in terms of biased attention for emotional stimuli and these biases can confer differential resilience and vulnerability to emotional disorders. Selective processing of positive emotional information, for example, is associated with enhanced sociability and well-being while a bias for negative material is associated with neuroticism and anxiety. A tendency to selectively avoid negative material might also be associated with mental health and well-being. The neurobiological mechanisms underlying these cognitive phenotypes are currently unknown. Here we show for the first time that allelic variation in the promotor region of the serotonin transporter gene (5-HTTLPR) is associated with differential biases for positive and negative affective pictures. Individuals homozygous for the long allele (LL) showed a marked bias to selectively process positive affective material alongside selective avoidance of negative affective material. This potentially protective pattern was absent among individuals carrying the short allele (S or SL). Thus, allelic variation on a common genetic polymorphism was associated with the tendency to selectively process positive or negative information. The current study is important in demonstrating a genotype-related alteration in a well-established processing bias, which is a known risk factor in determining both resilience and vulnerability to emotional disorders.  相似文献   

19.
This study examined whether polymorphisms in the serotonin transporter (SLC6A4, 5-HTTLPR) and brain-derived neurotropic factor (BDNF Val66Met, rs6265) genes moderate the relationship between life stress and rumination. Participants were a large homogenous group of healthy, unmedicated, never depressed individuals with few current symptoms of depression (N = 273). Results indicate that individuals with two short (S) alleles of the 5-HTTLPR polymorphism or two Met alleles of the BDNF Val66Met polymorphism ruminate more under conditions of life stress, compared to the other genotypes. Moreover, the accumulation of risk alleles (i.e. S and Met alleles) across genes is associated with significantly greater rumination in the context of life stress. These results suggest that both 5-HTTLPR and BDNF Val66Met moderate the relationship between life stress and rumination. These findings support the notion that variation in these genes is associated with biological sensitivity to the negative effects of stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号