首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Routine oxygen consumption rates of bonnethead sharks, Sphyrna tiburo , increased from 141·3±29·7 mg O2 kg−1 h−1 during autumn to 218·6±64·2 mg O2 kg−1 h−1 during spring, and 329·7±38·3 mg O2 kg−1 h−1 during summer. The rate of routine oxygen consumption increased over the entire seasonal temperature range (20–30° C) at a Q 10=2·34.  相似文献   

2.
The standard oxygen consumption of flounders, PLatichthys flesus , adapted for two months to 5 and 15° C was measured during single step and fluctuating temperature changes, A considerable recovery period from handling was required before standard levels were recorded, although no locomotor activity was evident. The Q 10(adapt) value between 5 and 15° C was 2.0. Q 10 (acute) values were higher. The responses of oxygen consumption to temperature rise conform to Type I11 metabolic compensation (Precht, 1958). No compensatory response was evident at lower temperatures. An alternative explanation of the results in terms ofexcitement metabolism is suggested.  相似文献   

3.
The optomotor reaction of juvenile Coregonus schinzipalea Val. et Cuv. and Salmo salar L. was utilized to develop a circular tube metabolism chamber to measure oxygen consumption and ammonia excretion as a function of swimming speed. The metabolism chamber with a constant water flow assured the maintenance of stable conditions. The unidirectional movement of fish was measured in a circular tube with a single narrowing. The relationships between the swimming speed and oxygen consumption or ammonia excretion described by exponential equations allowed the extrapolation towards the standard metabolism, i.e., zero swimming speed. For a juvenile coregonid (0.1–0.15 g individual weight, 2.6–2.8 cm total length) standard metabolism at 14° C was estimated as 0.65 mg02 g−1 h−1 and 17.3 μg N(NH3)g−1 h−1, whereas for juvenile salmon (136mg individual weight) respective values at 22° C were 0.047mg02g−1h−1 and 0.61 μg N(NH3)g−1 h−1. The feeding test with juvenile salmon was also performed in this circular chamber, and in both energy and nitrogen budgets after a meal the partitioning could be precisely attributed to standard metabolism, active metabolism and specific dynamic action (in the case of oxygen consumption) or postprandial nitrogen increase.
The new metabolism chamber allowed the relationship between metabolism and swimming velocity of juvenile fish with developed rheotactic response. It could be used with adult fish for similar purposes.  相似文献   

4.
Stomatal response to humidity: implications for transpiration   总被引:1,自引:1,他引:0  
Abstract. Transpiration rates from apple leaves are analysed in terms of the ratio of latent heat flux (λ E ) to leaf net radiation ( Q 1) and the climatological resistance ( ri ). Increases in stomatal resistance with increasing leaf to air vapour pressure gradient ( D ), described by an empirical model, are incorporated in the analysis. This humidity effect causes the proportion of energy dissipated as latent heat to fall as Q 1 increases, so that leaf transpiration rates in high energy environments are likely to be similar to those in lower energy environments. Boundary layer resistance ( r a) exerts an increasingly important effect on transpiration rates as Q 1 increases. At constant Q 1 stomatal closure in response to increasing D results in very small changes in leaf temperature ( T 1) across a wide range of ambient vapour pressure deficits (δ e ); r a is then the major factor determining T 1. The implications of these results are discussed.  相似文献   

5.
Oxygen uptake rates and yolk-inclusive dry weiGhts were measured during the egg and yolk-sac larval stages of milkfish, Chanos chanos (Forsskal). Oxygen uptake by eggs and yolk-sac larvae was measured to assess the effects of four salinities (20,25,30,35 ppt) at 28°C. The effects of three temperatures (23,28,33°C) on oxygen uptake by yolk-sac larvae were determined at a salinity of 35 ppt. Dry weights were measured throughout embryonic development at 28°C and the yolk-sac stage at 23.28 and 33°C.
Oxygen uptake rates of eggs increased more than fivefold during embryogenesis (0.07±0.03 to 0.40 ± 03 μl O2 egg −1 h −1;blastula to prehatch stage). Larval oxygen uptake did not change with age but was affected by rearing temperature (0.33 ± 0.08, 0.44 ± 0.07 and 0.63 ± 0.13 μl O2 larva −1 h−1 at 23, 28 and 33°C, respectively; Q10= 1.93). Acute temperature changes from 28 to 33°C caused significant increases in oxygen uptake by embryos (Q 10= 1.69–3.58) and yolk-sac larvae (Q 10=2.55). Salinity did not affect metabolic rates.
Dry weight of eggs incubated at 28°C decreased 13% from fertilization to hatching. Incubation temperatures from 23–33°C did not affect dry weights at hatching. Rearing temperatures significantly affected the rate of larval yolk absorption (Q 10= 2.25).  相似文献   

6.
Using an exponential model that relies on Arrhenius kinetics, we explored Type I, Type II and dynamic (e.g. declining Q 10 with increasing temperature) responses of respiration to temperature. Our Arrhenius model provides three parameters: R REF (the base of the exponential model, nmol g−1 s−1), E 0 (the overall activation energy of oxygen reduction that dominates its temperature sensitivity, kJ mol−1) and δ (that describes dynamic responses of E 0 to measurement temperature, 103 K2). Two parameters, E 0 and δ , are tightly linked. Increases in overall activation energy at a reference temperature were inversely related to changes in δ . At an E 0 of ca. 45 kJ mol−1, δ approached zero, and respiratory temperature response was strictly Arrhenius-like. Physiologically, these observations suggest that as contributions of AOX to combined oxygen reduction increase, E 0( REF ) decreases because of different temperature sensitivities for V max, and δ increases because of different temperature sensitivities for K 1/2 of AOX and COX. The balance between COX and AOX activity helps regulate plant metabolism by adjusting the demand for ATP to that for reducing power and carbon skeleton intermediates. Our approach enables determination of respiratory capacity in vivo and opens a path to development of process-based models of plant respiration.  相似文献   

7.
Abstract. 1. Oxygen consumption was determined for ninety-three taxa of desert-inhabiting arthropods of various life stages over the temperature range 10–40C. Regression analysis of O2 consumed/individual/h on the mean dry weight of individual adult insects yielded a slope of 0.70 ( r = 0.87) while the same analysis for non-insect arthropods gave a slope of 0.74 ( r - 0.87).
2. Average Q10 for all insects was 2.16 ± 0.66 over the 10–40C temperature range. Q10was not significantly different among orders of arthropods at each 10 temperature interval but decreased significantly with an increase in temperature.
3. Per cent water content ranged from a mean of 60% for Coleoptera to 78% for Lepidoptera larvae and indicated the necessity of using dry weight values in analyses of the relationship between size and oxygen consumption rates.
4. Models are supplied for each taxon to calculate the minimum energy for basic metabolism of field populations per unit time and area.  相似文献   

8.
A new chemical indicator for monitoring steam sterilization processes has been calibrated in F 0 units. The effective temperature range for F 0 measurements using this device has been shown to lay between 115 and 123°C. The effective F 0 range of the device has been shown to be 4–23 F 0 units. Using the device, measurements can be made within 0.5 units of conventionally calculated F 0 values.  相似文献   

9.
We showed that temperature responses of dark respiration for foliage of Pinus radiata could be approximated by Arrhenius kinetics, whereby E 0 determines shape of the exponential response and denotes overall activation energy of respiratory metabolism. Reproducible and predictable deviation from strict Arrhenius kinetics depended on foliage age, and differed between R CO2 and R O2. Inhibition of oxygen reduction ( R O2) by cyanide (inhibiting COX) or SHAM (inhibiting AOX) resulted in reproducible changes of the temperature sensitivity for R O2, but did not affect R CO2. Enthalpic growth – preservation of electrons in anabolic products – could be approximated with knowledge of four variables: activation energies ( E 0) for both R CO2 and R O2, and basal rates of respiration at a low reference temperature ( R REF). Rates of enthalpic growth by P. radiata needles were large in spring due to differences between R REF of oxidative decarboxylation and that of oxygen reduction, while overall activation energies for the two processes were similar. Later during needle development, enthalpic growth was dependent on differences between E 0 for R CO2 as compared with R O2, and increased E 0( R O2) indicated greater contributions of cytochrome oxidase to accompany the switch from carbohydrate sink to source. Temperature-dependent increments in stored energy can be calculated as the difference between R CO2▵ H CO2 and R O2▵ H O2.  相似文献   

10.
ABSTRACT. Oxygen consumption (O2) in six species of adult tiger beetles Cicindela spp. (Coleoptera: Cicindelidae) was correlated with body mass and temperature during rest. In beetles forced to run and/or right themselves continuously for 5–10 min at 25°C, O2 was approximately 7–12 times as high as in resting individuals; the difference increased with increasing mass. Resting and active VO2 were similar to previous results for other beetles, although the slope of log O2 on log mass was lower. Detailed analysis suggests the existence of taxonomic and ecological correlates of resting metabolism. The possible ecological implications and adaptive advantages of these results for adult tiger beetles are discussed.  相似文献   

11.
Rates of oxygen consumption were measured in the geothermal, hot spring fish, Oreochromis alcalicus grahami by stopped flow respirometry. At 37° C, routine oxygen consumption followed the allometric relationship: V o2=0.738 M 0.75, where V o2 is ml O2 h −1 and M is body mass (g). This represents a routine metabolic rate for a 10 g fish at 37° C of 0.415 ml O2 g−1 h −1 (16.4 μmol O2 g −1 h −1). Acutely increasing the temperature from 37 to 42° C significantly elevated the rate of O2 consumption from 0.739 to 0.970 ml O2 g −1 h −1 ( Q 10=l.72). In the field, O. a. grahami was observed to be 'gulping' air from the surface of the water especially in hot springs that exceeded 40° C. O. a. grahami may utilize aerial respiration when O2 requirements are high.  相似文献   

12.
Oxygen consumption of carp acclimated at 10 and 20° C has been measured under routine conditions. Some complications and precautions necessary in continuous flow respirometry are discussed. Routine V o2 at different levels of hypoxia have been determined. Individual variation leads to scatter in the data and different methods of plotting the relationship between V o2 and P o2 are proposed; attention is drawn to differences between inlet (or ambient) P o2 and inspired P o2. Using certain criteria a 'critical' oxygen tension of about 95 mm Hg was found at 20° C; Q 10 values are about 2 at normoxia and some suggestions of an increase near to the critical oxygen tension were found. Blood samples from the dorsal aorta showed rising Pa,o2 of 16 mm Hg which increased to 70–80 mm Hg when P insp was 90 and they then fall as the inspired oxygen is lowered. During periods of deep hypoxia (25 mm Hg) blood lactate concentration increases steadily and indicates an increasing dependence on anaerobic mechanisms.  相似文献   

13.
Abstract Cytochromes d and b 595 were studied by low temperature photodissociation of CO-ligated Azotobacter vinelandii membranes. White light or He-Ne laser irradiation revealed 436 and 594–597 nm absorption bands to be due to Fe11 cytochrome b 595. Oxy-cytochrome d (648 nm) was formed when the CO adduct was photolysed in the presence of oxygen. This was followed by ligand recombination (presumably oxygen) to the high-spin cytochrome b 595, with a distinctive shift to shorter wavelengths of the α-band of the cytochrome, and a decrease in the oxygenated form. All spectral changes were light-reversible. We demonstrate the light-reversible binding of CO to both cytochromes b 595 and d , and suggest migration of oxygen from cytochrome d to cytochrome b 595 at a haem-haem binuclear centre during the oxidase reaction.  相似文献   

14.
The mean rate of oxygen consumption (routine respiration rate, R R, mg O2 fish−1 h−1), measured for individual or small groups of haddock Melanogrammus aeglefinus (3–12 cm standard length, L S) maintained for 5 days within flow‐through respiratory chambers at four different temperatures, increased with increasing dry mass ( M D). The relationship between R R and M D was allometric ( R R = α  M b ) with b values of 0·631, 0·606, 0·655 and 0·650 at 5·0, 8·0, 12·0 and 15·0° C, respectively. The effect of temperature ( T ) and M D on mean R R was described by     indicating a Q 10 of 2·27 between 5 and 15° C. Juvenile haddock routine metabolic scope, calculated as the ratio of the mean of highest and lowest deciles of R R measured in each chamber, significantly decreased with temperature such that the routine scope at 15° C was half that at 5° C. The cost of feeding ( R SDA) was c . 3% of consumed food energy, a value half that found for larger gadoid juveniles and adults.  相似文献   

15.
Abstract: Cerebrovascular amyloid β-protein (Aβ) deposition is a key pathological feature of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Aβ1–40 containing the E22Q HCHWA-D mutation, but not wild-type Aβ1–40, potently induces several pathologic responses in cultured human cerebrovascular smooth muscle cells, including cellular degeneration and a robust increase in the levels of cellular Aβ precursor. In the present study, we show by several quantitative criteria, including thioflavin T fluorescence binding, circular dichroism spectroscopy, and transmission electron microscopic analysis, that at a concentration of 25 µ M neither HCHWA-D Aβ1–40 nor wild-type Aβ1–40 appreciably assembles into β-pleated sheet-containing fibrils in solution over a 6-day incubation period. In contrast, at the same concentrations, HCHWA-D Aβ1–40, but not wild-type Aβ1–40, selectively binds and assembles into abundant fibrils on the surfaces of cultured human cerebrovascular smooth muscle cells. The simultaneous addition of an equimolar concentration of the dye Congo red prevents the cell surface fibril assembly of HCHWA-D Aβ1–40. Moreover, Congo red effectively blocks the key pathologic responses induced by HCHWA-D Aβ1–40 in these cells. The present findings suggest that the surface of human cerebrovascular smooth muscle cells may selectively orchestrate the assembly of pathogenic Aβ fibrils and that cell surface Aβ fibril formation plays an important role in causing the pathologic responses in these cells.  相似文献   

16.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

17.
Routine oxygen consumption rates of juvenile spot, Leiostomus xanthums , were measured over a range of temperatures, salinities and fish weights. As predicted, Q O2 increased with temperature and decreased with body weight. However, Q O2 decreased with decreasing salinity and did not show the expected minimum at isosmotic concentrations. The data are best described by the relationship: log10 Q O2 (mg O2 g−1 h−1) = 0.129 loglo salinity (%0) + 1.604 log10 temperature (°C)-0.1401og10(g)-2.767.  相似文献   

18.
Five strains of filamentous fungi belonging to the genera Mortierella and Cunninghamella were examined for the content of dihomo-γ-linolenic, arachidonic, eicosapentaenoic acids and prostaglandins (type E2 and F ). Prostaglandins were detected using an ELISA method in mycelia of all tested strains (range 50–4800 ng g−1 of PGE2 and 6–30 ng g−1 of PG F ). Several micro-organisms also produced prostaglandins in the culture medium (2·2–137·6 μg l−1 for PGE2 and 0·4–7·8 μg l−1 for PG F ).  相似文献   

19.
We investigated seasonal variation in dark respiration and photosynthesis by measuring gas exchange characteristics on Pinus radiata and Populus deltoides under field conditions each month for 1 year. The field site in the South Island of New Zealand is characterized by large day-to-day and seasonal changes in air temperature. The rate of foliar respiration at a base temperature of 10 °C ( R 10) in both pine and poplar was found to be greater during autumn and winter and displayed a strong downward adjustment in warmer months. The sensitivity of instantaneous leaf respiration to a 10 °C increase in temperature ( Q 10) was also greater during the winter period. The net effect of this strong acclimation was that the long-term temperature response of respiration was essentially flat over a wide range of ambient temperatures. Seasonal changes in photosynthesis were sensitive to temperature but largely independent of leaf nitrogen concentration or stomatal conductance. Over the range of day time growth temperatures (5–32 °C), we did not observe strong evidence of photosynthetic acclimation to temperature, and the long-term responses of photosynthetic parameters to ambient temperature were similar to previously published instantaneous responses. The ratio of foliar respiration to photosynthetic capacity ( R d/ A sat) was significantly greater in winter than in spring/summer. This indicates that there is little likelihood that respiration would be stimulated significantly in either of these species with moderate increases in temperature – in fact net carbon uptake was favoured at moderately higher temperatures. Model calculations demonstrate that failing to account for strong thermal acclimation of leaf respiration influences determinations of leaf carbon exchange significantly, especially for the evergreen conifer.  相似文献   

20.
We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O2 concentrations in N2 (9–1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O2 concentration and the increase in CO2 concentration as result of leaf respiration were measured by a zirconium cell O2 analyser and infrared-absorption CO2 analyser, respectively. The low O2 concentrations little influenced the rate of CO2 evolution during the 60-s exposure. The initial slope of the O2 uptake curve on the dissolved O2 concentration basis was relatively constant in leaves of a single species, 1.5 mm s−1 in sunflower and 1.8 mm s−1 in aspen. The apparent K 0.5(O2) values ranged from 0.33 to 0.67 μ M in sunflower and from 0.33 to 1.1 μ M in aspen, mainly because of the variation of the maximum rate, V max (leaf temperature 22°C). The initial slope of the O2 response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号