首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of brain galactocerebroside monolayers   总被引:1,自引:0,他引:1  
Using a Langmuir film balance we have compared the properties of films of the brain galactocerebrosides at 37 degrees C. There are two types of cerebroside in brain, those with an alpha-hydroxy substituent on the acyl chain (HFA) and those without (NFA). At equivalent pressures the areas of both cerebroside films are significantly less than the areas of films of the brain glycerolipids, the choline and ethanolamine phosphatides. The isotherm of NFA galactocerebrosides has two discontinuities, one at low and one at high film pressure, while the isotherm of HFA galactocerebrosides is a smooth curve at all film pressures. Below the high-pressure transition the area of the NFA film is significantly larger than the area of the HFA film. When compressed beyond the high-pressure transition there is a marked hysteresis between compression and expansion isotherms of the NFA galactocerebrosides. The pressures of both films continue to rise steeply when they are compressed into areas which are too small for them to exist as simple monolayers. We conclude that under compression cerebroside films form bilayer structures; that bilayer formation starts at low pressure and occurs progressively as the HFA cerebroside monolayer is compressed, but occurs more abruptly in the NFA cerebroside monolayer at the high-pressure-transition region of the isotherm. A study of pure cerebrosides with a single defined acyl chain shows that there is a correlation between the relative volumes of the hydrophobic and hydrophilic parts of the molecule and the ease of bilayer formation. The larger the relative volume of the hydrophilic group the more readily the cerebroside forms a bilayer film. Other brain lipids added to cerebroside monolayers have sharply differing effects on their areas. The areas of films containing cholesterol are less than the areas calculated by adding the areas of the pure components multiplied by their mole fractions. On the other hand, the area of phosphatidylcholine-containing films is much larger than calculated.  相似文献   

2.
The circular dichroism (CD) spectra of a number of sphingolipids dispersed in water have been studied. The lipids include cerebrosides such as palmitoyl cerebroside, glucocerebroside from the spleen of Gaucher patients, bovine brain galactocerebrosides type I and type II, (BCI and BCII, respectively) and also sphingomyelins such as egg sphingomyelin and bovine brain sphingomyelin. Changes in the CD spectra of the lipids which occur upon heating and cooling and the effects of cholesterol, phosphatidylcholine and the opiate leucine enkephalin were studied.  相似文献   

3.
Phase behavior of galactocerebrosides from bovine brain   总被引:3,自引:0,他引:3  
W Curatolo  F B Jungalwala 《Biochemistry》1985,24(23):6608-6613
Bovine brain cerebrosides (BOV-CER) were separated by high-performance liquid chromatography into cerebroside fractions with a single acyl chain type or with a relatively homogeneous acyl chain distribution. The thermal behavior of these isolated cerebroside fractions was studied by differential scanning calorimetry. Nonhydroxy (n-acyl) fatty acid cerebrosides (NFA-CER) possessing a saturated acyl chain (C16:0, C18:0, C24:0) exhibit their major order-disorder transition temperature TM at 83 degrees C, independent of chain length. NFA-CER possessing primarily unsaturated acyl chains (C24:1) exhibits TM at 70 degrees C. 2-Hydroxy fatty acid cerebrosides (HFA-CER), which possess a saturated hydroxyacyl chain (C18:0h, C24:0h), exhibit TM at 70-72 degrees C. Thus, naturally occurring cerebrosides exhibit high TM's that do not depend significantly on acyl chain length and that depend only to a small degree on unsaturation and the presence of a 2-hydroxy branch in the amide-linked chain. Isolated NFA-CER's each exhibit metastable polymorphism of the type previously described for unfractionated NFA-CER [Curatolo, W. (1982) Biochemistry 21, 1761]. Polymorphism in HFA-CER is complex, with a different type of thermal behavior observed for each isolated acyl chain fraction studied. On prolonged storage at low temperature, unfractionated HFA-CER and unfractionated BOV-CER reach a highly ordered gel state similar to that which is readily reached by NFA-CER's. These results indicate that all cerebrosides exhibit metastable polymorphism. However, the kinetic barriers to reaching the stable gel state are greater for HFA-CER and BOV-CER than for NFA-CER.  相似文献   

4.
Chemically simplified lipid mixtures are used here as models of the cell plasma membrane exoplasmic leaflet. In such models, phase separation and morphology transitions controlled by line tension in the liquid-disordered (Ld)?+?liquid-ordered (Lo) coexistence regime have been described [1]. Here, we study two four-component lipid mixtures at different cholesterol fractions: brain sphingomyelin (BSM) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). On giant unilamellar vesicles (GUVs) display a nanoscopic-to-macroscopic transition of Ld?+?Lo phase domains as POPC is replaced by DOPC, and this transition also depends on the cholesterol fraction. Line tension decreases with increasing cholesterol mole fractions in both lipid mixtures. For the ternary BSM/DOPC/Chol mixture, the published phase diagram [19] requires a modification to show that when cholesterol mole fraction is >~0.33, coexisting phase domains become nanoscopic.  相似文献   

5.
Lipid composition was determined for different regions of rabbit nervous tissue. In the white matter of adult rabbit, the ratio between cholesterol, phospholipids and sphingolipids was quite constant. Among the subclasses of phospholipids, phosphatidylcholine and sphingomyelin tended to compensate for each other as constituents of myelin, as did galactosphingolipids and sphingomyelin amongst the sphingolipids. The brain was rich in phosphatidylcholine and gakactosphingolipids, while peripheral nerves (PN) were rich in sphingomyelin. The spinal cord showed a composition intermediate between the brain and PN. The sphingolipid to phosphatidylcholine ratio seems to be useful as a myelin maturation index applicable to both CNS and PN. The rostral part of the CNS showed a high ratio of molecular species of cerebroside with α-hydroxy fatty acids to those with unsubstituted fatty acids (CH/CN). The caudal part of the CNS had a high concentration of cerebrosides with C24-monoenoic fatty acids, so that there was an inverse relationship between CH/CN and C24:1/C24:0 for different regions of CNS. The present data show that the lipid composition as well as the fatty acid composition of myelin-specific lipids are influenced by neural differentiation and development or by neuroglial relationships.  相似文献   

6.
Previous studies on myelinating rat brain indicated that microsomes, Golgi-enriched and cytosol fractions may process galactolipids destined for myelin. To extend these findings we labeled brain galactolipids in vivo and determined the specific radioactivity of cerebrosides and sulfatides in several subcellular fractions. 17-day-old rats were treated by intracranial injection with [14C]galactose 60 min prior to and [3H]galactose 15 min prior to killing. Subcellular fractions were prepared from brain stem, and concentrations of cerebrosides and sulfatides were determined, their radioactivity measured and the 3H/14C ratio compared. Our results showed that the heavier Golgi-enriched fraction (designated Fraction 2) is unique in its low galactolipid content and high specific radioactivities of cerebrosides and sulfatides. The low ratio of the specific activity of cerebroside to that of sulfatide in Fraction 2 compared to other fractions indicates that it may be the site of most rapid conversion of newly synthesized cerebrosides to sulfatides. The specific radioactivities of cerebrosides and sulfatides in cytosol are intermediate between those in Golgi-enriched Fraction 2 and microsomes and those in myelin, consistent with the role postulated for cytoplasmic elements in the transport of cerebrosides and sulfatides to myelin.  相似文献   

7.
D D Archibald  P Yager 《Biochemistry》1992,31(37):9045-9055
Aqueous suspensions of either brain galactocerebrosides or its subfraction consisting of alpha-hydroxyacyl galactocerebrosides are mainly composed of vesicles or granular lipid with occasional multilamellar sheets. In aqueous media the other subfraction consisting of non-hydroxyacyl galactocerebrosides forms some helical structures, but most of the lipid remains as granules or vesicles. It is demonstrated that thermal cycling of non-hydroxyacyl galactocerebrosides in polar nonaqueous solvents can greatly enhance the degree of conversion to helical ribbons about 100 nm in diameter. These structures appear to be a stable dehydrated crystalline form of this lipid and are morphologically similar to helical microstructures produced by a few synthetic lipids. On the other hand, similar treatment of unfractionated bovine brain cerebroside and its alpha-hydroxy fatty acyl subfraction quantitatively produces straight needles that appear to be cochleate cylinders. While their dimensions depend on formation conditions, a typical suspension has uniform particles with diameters close to 100 nm and lengths variable from one to a few hundred micrometers. This is the first report demonstrating the quantitative formation of crystalline high axial ratio microstructures from complex mixtures of natural lipids. The different microstructures formed by the two components appear related to the various forms of lipid deposits occurring in lipid storage diseases. The similarity of these "synthetic" microstructures to biological structures in which they are found (such as myelin and intestinal brush border microvilli) strengthens the possibility that galactocerebrosides have a role in stabilizing cylindrical biological structures.  相似文献   

8.
The objective of this study was to determine whether the conversion of free, very long chain fatty acids (C22–C26) to their CoA-esters are involved in cerebroside synthesis, since cerebrosides are uniquely rich in very long chain fatty acids including lignoceric acid (C24:0). We have studied lignoceroyl-CoA synthetase activity in the microsomes isolated from normal and jimpy mouse brain. The jimpy mouse lacks the ability to make myelin and is deficient in enzyme activities involved in the synthesis of myelin components, including cerebrosides. Unexpectedly, the lignoceroyl-CoA synthetase activity in jimpy brain microsomes was slightly higher than that in control microsomes. The palmitoyl (C16:0)-CoA synthetase activity in jimpy brain was not different from the control. The level of cerebrosides in microsomes was grossly lower in jimpy brain. The implication of these findings and the involvement of lignoceric acid activation in cerebroside synthesis is discussed.  相似文献   

9.
The effect of galactocerebroside 3'-sulfate (sulfatide) or cholesterol sulfate on syncytium formation induced by bovine immunodeficiency virus (BIV)-infected cells was investigated in vitro. Sulfatide was purified from bovine brain and incorporated in liposomes which were composed of egg phosphatidylcholine (PC), cholesterol (Chol), and dipalmitoylphosphatidic acid (DPPA). Either sulfatide- or cholesterol sulfate-containing liposomes effectively prevented syncytium formation induced by BIV-infected cells, but the inhibitory effect of sulfatide alone on syncytium formation was low. On the other hand, neither liposomes containing galactocerebroside nor liposomes composed of egg PC, Chol, and DPPA had any effect on syncytium formation induced by BIV-infected cells. These results suggest that liposomes containing sulfatide or cholesterol sulfate are an efficient agent to inhibit syncytium formation induced by BIV-infected cells, and that sulfate residue might play an important role in the inhibition of syncytium formation.  相似文献   

10.
Bovine brain cerebroside and its kerasin (beta-D-galactosyl-N-acyl-D-sphingosine) and phrenosin (beta-D-galactosyl-N-(2-D-hydroxyacyl)-D-sphingosine) fractions were mixed with diacylphosphatidylcholines (PCs) to form fully hydrated lamellar phases. These mixtures were examined by differential scanning calorimetry, and phase diagrams for cerebroside/diacylPC mixtures were constructed from the data. Cerebroside was found to be miscible with egg PC at low mole fractions X of cerebroside; the mixture behaves non-ideally for X greater than 0.25. The non-ideal behavior appears to be a superposition of separate interactions of kerasin and phrenosin with egg PC. Strikingly, phrenosin mixes nearly ideally with egg PC. Kerasin mixed with egg PC yields a peritectic phase diagram. Cerebroside and phrenosin were found to be immiscible with dimyristoylphosphatidylcholine (DMPC) in the gel state in low proportions. Both stable and metastable gel phases of kerasin were detected in different endotherms of kerasin/PC mixtures. Kerasin in the stable and metastable gel states exhibits discontinuous and continuous ranges of miscibility, respectively, with DMPC. The stable gel phase of kerasin does not segregate in natural cerebroside. Natural kerasin was found to act isomorphic to semi-synthetic (natural configuration) D-kerasins but not completely to synthetic DL-kerasins of single acyl chain lengths.  相似文献   

11.
The ESR spectra from different positional isomers of sphingomyelin and phosphatidylcholine spin-labeled in their acyl chain have been studied in sphingomyelin(cerebroside)-phosphatidylcholine mixed membranes that contain cholesterol. The aim was to investigate mechanisms by which cholesterol could stabilize possible domain formation in sphingolipid-glycerolipid membranes. The outer hyperfine splittings in the ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled on the 5 C atom of the acyl chain were consistent with mixing of the components, but the perturbations on adding cholesterol were greater in the membranes containing sphingomyelin than in those containing phosphatidylcholine. Infrared spectra of the amide I band of egg sphingomyelin were shifted and broadened in the presence of cholesterol to a greater extent than the carbonyl band of phosphatidylcholine, which was affected very little by cholesterol. Two-component ESR spectra were observed from lipids spin-labeled on the 14 C atom of the acyl chain in cholesterol-containing membranes composed of sphingolipids, with or without glycerolipids (sphingomyelin/cerebroside and sphingomyelin/cerebroside/phosphatidylcholine mixtures). These results indicate the existence of gel-phase domains in otherwise liquid-ordered membranes that contain cholesterol. In the gel phase of egg sphingomyelin, the outer hyperfine splittings of sphingomyelin spin-labeled on the 14-C atom of the acyl chain are smaller than those for the corresponding spin-labeled phosphatidylcholine. In the presence of cholesterol, this situation is reversed; the outer splitting of 14-C spin-labeled sphingomyelin is then greater than that of 14-C spin-labeled phosphatidylcholine. This result provides some support for the suggestion that transbilayer interdigitation induced by cholesterol stabilizes the coexistence of gel-phase and "liquid-ordered" domains in membranes containing sphingolipids.  相似文献   

12.
Galactosylceramide sulfotransferase (EC 2.8.2.11) catalyzes the biosynthesis of sulfatide from galactocerebroside and adenosine 3'-phosphate 5'-phosphosulfate (PAPS). This enzyme is developmentally controlled, reaching a maximum activity in the brains of mice corresponding to that of maximum myelination. The product, sulfatide, is an important component of myelin. This transferase from mouse brain has been purified 2600-fold using a combination of pyridoxal 5'-phosphate- and ATP-ligated columns. The purified enzyme yielded a single band following SDS-polyacrylamide gel electrophoresis with an apparent M(r) of 31,000. The entire purification procedure can be completed in 1 day. The pH optimum for the enzyme is 7.0. The Km for PAPS is 1.2 x 10(-6) M, and the Km for cerebroside is 2.6 x 10(-5) M. Cerebroside concentrations > 80 pmol/ml are inhibitory. Enzyme preparations were associated with several lipids. Vitamin K+P(i) activated purified preparations of the sulfotransferase and maintained enzyme activity during storage at -80 degrees C.  相似文献   

13.
The dynamic structure of detergent-resistant membranes (DRMs) isolated from RBL-2H3 cells was characterized using two different acyl chain spin-labeled phospholipids (5PC and 16PC), a headgroup labeled sphingomyelin (SM) analog (SD-Tempo) and a spin-labeled cholestane (CSL). It was shown, by comparison to dispersions of SM, dipalmitoylphosphatidylcholine (DPPC), and DPPC/cholesterol of molar ratio 1, that DRM contains a substantial amount of liquid ordered phase: 1) The rotational diffusion rates (R( perpendicular)) of 16PC in DRM between -5 degrees C and 45 degrees C are nearly the same as those in molar ratio DPPC/Chol = 1 dispersions, and they are substantially greater than R( perpendicular) in pure DPPC dispersions in the gel phase studied above 20 degrees C; 2) The order parameters (S) of 16PC in DRM at temperatures above 4 degrees C are comparable to those in DPPC/Chol = 1 dispersions, but are greater than those in DPPC dispersions in both the gel and liquid crystalline phases. 3) Similarly, R( perpendicular) for 5PC and CSL in DRM is greater than in pure SM dispersions in the gel phase, and S for these labels in DRM is greater than in the SM dispersions in both the gel and liquid crystalline phases. 4) R( perpendicular) of SD-Tempo in DRM is greater than in dispersions of SM in both gel and liquid phases, consistent with the liquid-like mobility in the acyl chain region in DRM. However, S of SD-Tempo in DRM is substantially less than that of this spin label in SM in gel and liquid crystalline phases (in absolute values), indicating that the headgroup region in DRMs is less ordered than in pure SM. These results support the hypothesis that plasma membranes contain DRM domains with a liquid ordered phase that may coexist with a liquid crystalline phase. There also appears to be a coexisting region in DRMs in which the chain labels 16PC and 5PC are found to cluster. We suggest that other biological membranes containing high concentrations of cholesterol also contain a liquid ordered phase.  相似文献   

14.
The synthesis and turnover of cerebrosides and phospholipids was followed in microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of [U-14C]serine. The kinetics of incorporation of radioactivity into microsomal and myelin cerebrosides indicate the possibility of a precursor-product relationship between cerebrosides of these membranes. The specific radioactivity of myelin cerebrosides was corrected for the deposition of newly formed cerebrosides in myelin. Multiphasic curves were obtained for the decline in specific radioactivity of myelin and microsomal cerebrosides, suggesting different cerebroside pools in these membranes. The half-life of the fast turning-over pool of cerebrosides of myelin was 7 and 22 days for the developing and adult rat brain respectively. The half-life of the slowly turning-over pool of myelin cerebrosides was about 145 days for both groups of animals. The half-life of the rapidly turning-over microsomal cerebrosides was calculated to be 20 and 40 h for the developing and adult animals respectively. The half-life of the intermediate and slowly turning-over microsomal cerebrosides was 11 and 60 days respectively, for both groups of animals. The amount of incorporation of radioactivity into microsomal cerebrosides from L-serine was greatly decreased in the adult animals, and greater amounts of the precursor were directed towards the synthesis of phosphatidylserine. In the developing animals, considerable amounts of cerebrosides were synthesized from L-serine, besides phosphatidylserine. The time-course of incorporation indicated that a precursor-product relationship exists between microsomal and myelin phosphatidylserine. The half-life of microsomal phosphatidylserine was calculated to be about 8 h for the fast turning-over pool in both groups of animals.  相似文献   

15.
The phase behavior of mixed lipid dispersions representing the inner leaflet of the cell membrane has been characterized by X-ray diffraction. Aqueous dispersions of phosphatidylethanolamine:phosphatidylserine (4:1 mole/mole) have a heterogeneous structure comprising an inverted hexagonal phase H(II) and a lamellar phase. Both phases coexist in the temperature range 20-45 degrees C. The fluid-to-gel mid-transition temperature of the lamellar phase assigned to phosphatidylserine is decreased from 27 to 24 degrees C in the presence of calcium. Addition of sphingomyelin to phosphatidylethanolamine/phosphatidylserine prevents phase separation of the hexagonal H(II) phase of phosphatidylethanolamine but the ternary mixture phase separates into two lamellar phases of periodcity 6.2 and 5.6 nm, respectively. The 6.2-nm periodicity is assigned to the gel phase enriched in sphingomyelin of molecular species comprising predominantly long saturated hydrocarbon chains because it undergoes a gel-to-fluid phase transition above 40 degrees C. The coexisting fluid phase we assign to phosphatidylethanolamine and phosphatidylserine and low melting point molecular species of sphingomyelin which suppresses the tendency of phosphatidylethanolamine to phase-separate into hexagonal H(II) structure. There is evidence for considerable hysteresis in the separation of lamellar fluid and gel phases during cooling. The addition of cholesterol prevents phase separation of the gel phase of high melting point sphingomyelin in mixtures with phosphatidylserine and phosphatidylethanolamine. In the quaternary mixture the lamellar fluid phase, however, is phase separated into two lamellar phases of periodicities of 6.3 and 5.6 nm (20 degrees C), respectively. The lamellar phase of periodicity 5.6 nm is assigned to a phase enriched in aminoglycerophospholipids and the periodicity 6.3 nm to a liquid-ordered phase formed from cholesterol and high melting point molecular species of sphingomyelin characterized previously by ESR. Substituting 7-dehydrocholesterol for cholesterol did not result in evidence for lamellar phase separation in the mixture within the temperature range 20-40 degrees C. The specificity of cholesterol in creation of liquid-ordered lamellar phase is inferred.  相似文献   

16.
The lipid composition of the brain, including myelin, was studied in detail in two cases with a variant form of metachromatic leukodystrophy (multiple sulphatase deficiency type). In the white matter, the sulphatide concentration was 3-4 times higher than the normal level in both cases. There was a significant accumulation of cholesterol sulphate in the brain, liver and kidney of both cases. The ganglioside pattern in the grey and white matter was abnormal, with a higher proportion of GM3, GM2 and GD3-gangliosides. Non-lipid hexosamine contents were increased 1.5-2 times in brain, 8-10 times in liver and 2-3 times in kidney. Increased amounts of glucocerobroside, ceramide lactoside and ceramide trihexoside were present in grey and white matter of both cases. Recovery of purified myelin from two patients' brains was much less than from control (1-2% in case 1 and 20-30% in case 2). The lipid composition of myelin was almost normal except for a higher proportion of sulphatide, with a decreased amount of cerebroside. The fatty acid compositions of myelin sulphatide and sphingomyelin were almost normal, while non-hydroxy fatty acids of cerebroside contained less long-chain fatty acids, as characterized by a significant increase of C16:0 and C18:0 fatty acids. The myelin polypeptide pattern by SDS-disc gel electrophoresis showed a relative decrease of basic protein and of proteolipid protein. A possible mechanism of myelin loss in MSD is discussed.  相似文献   

17.
We studied the thermal behavior of membranes composed of mixtures of natural cerebrosides (from porcine brain) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with and without cholesterol, using differential scanning calorimetry, Fourier transform infrared spectroscopy, and confocal/multiphoton fluorescence microscopy. The POPC/cerebroside mixture display solid ordered/liquid disordered phase coexistence in a broad range of compositions and temperatures in agreement with previous results reported for POPC/(bovine brain)cerebrosides. The observed phase coexistence scenario consists of elongated, micrometer-sized cerebroside-rich solid ordered domains that span the bilayer, embedded in a POPC-rich liquid disordered phase. The data obtained from differential scanning calorimetry and Fourier transform infrared spectroscopy was in line with that obtained in the microscopy experiments for the binary mixture, except at very high cerebroside molar fractions (0.8-0.9) were some differences are observed. Cholesterol incorporation exerts strong changes on the lateral organization of POPC/porcine brain cerebroside membranes. At intermediate cholesterol concentrations (10-25 mol %) the solid ordered/liquid disordered phase coexistence scenario gradually transform to a solid ordered/liquid ordered one. Above 25 mol % of cholesterol two distinct regions with liquid ordered phase character are visualized in the membrane until a single liquid ordered phase forms at 40 mol % cholesterol. The observed cholesterol effect largely differs from that reported for POPC/porcine brain ceramide, reflecting the impact of the sphingolipids polar headgroup on the membrane lateral organization.  相似文献   

18.
Synthesis and transport of nonhydroxy fatty acid (NFA)- and hydroxy fatty acid (HFA)-containing ceramides, cerebrosides, and sulfatides were studied in vivo in rat brain during development. After an intracerebral injection of [3H]serine, incorporation into these lipids of microsomal and myelin membranes was analyzed after HPLC. Distribution of amounts and incorporation of radioactivity were also determined in individual molecular species of these lipids. The results showed that HFA-ceramides and long-chain NFA-ceramides have small pool sizes and rapid turnover rates in the microsomal membranes and are preferentially utilized for the synthesis of long-chain (greater than or equal to 20:0) HFA- and NFA-galactocerebrosides of both microsomal and myelin membranes. Glucocerebrosides are not expressed in myelin and their synthesis in microsomal membranes is predominant before the onset of myelination. With development, synthesis and accumulation of HFA-cerebrosides increase over NFA-cerebrosides in both microsomal and myelin membranes. In myelin, incorporation of radioactivity into HFA-cerebrosides is even higher than that expected by transport alone from microsomal membranes and it is possible that part of the HFA-cerebrosides in myelin could be due to de novo synthesis by myelin itself. The amount of NFA- and HFA-sulfatides is about equal, both in myelin and microsomal membranes, and this relative proportion does not change with development. Similar relative rates of incorporation of radioactivity into sulfatides of microsomal and myelin membranes are consistent with the notion that both NFA and HFA sulfatides are synthesized in the microsomal (Golgi) membranes and are transported to myelin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
J R Silvius 《Biochemistry》1992,31(13):3398-3408
Carbazole- and indole-labeled phospholipids have been used to monitor the homo- or heterogeneity of lipid mixing in several types of lipid bilayers combining a brominated and a nonbrominated lipid with varying amounts of cholesterol. Experimental quenching curves (relating the normalized probe fluorescence intensity to the mole fraction of brominated lipid) show a characteristic smooth, monophasic form for homogeneous liquid-crystalline lipid mixtures. However, for mixtures exhibiting lipid lateral segregation, such curves show marked perturbations in form over the region of composition where segregation occurs. Using this approach, it is found that high mole fractions of cholesterol (40-50 mol %) promote the formation of apparently homogeneous solutions in mixtures of disaturated and monounsaturated phosphatidylcholines (PCs) that exhibit extensive thermotropic phase separations in the absence of sterol. At only slightly lower levels of cholesterol, however, these systems exhibit inhomogeneous lipid mixing over a wide range of relative proportions of the two PC components. Mixtures of cerebroside and monounsaturated PCs, even at high bilayer cholesterol contents, exhibit significant inhomogeneity in lipid mixing over a wide range of cerebroside/PC ratios. Phase-separating PC/PC and PC/cerebroside mixtures can readily form long-lived metastable solutions when the level of the higher-melting component in the liquid-crystalline phase exceeds its equilibrium solubility by as much as 20-30 mol %; this tendency is significantly increased by cholesterol. Cholesterol shows no significant ability to enhance lipid intermixing in a third type of phase-separating lipid system, combining a monounsaturated PC with a monounsaturated phosphatidic acid--calcium complex. Experiments using cleavable phospholipid conjugates, linking a fluorescent lipid to a brominated lipid, suggest that each fluorescent molecule probes a local lipid domain comprising approximately less than 40-50 nearby acyl chains.  相似文献   

20.
Multilameller liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distributions of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome preparation. Liver uptake up encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides, regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号