首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-mRNA splicing requires dramatic RNA rearrangements hypothesized to be catalyzed by ATP-dependent RNA unwindases of the DExD/H box family. In a rearrangement critical for the fidelity of 5' splice site recognition, a base-pairing interaction between the 5' splice site and U1 snRNA must be switched for a mutually exclusive interaction between the 5' splice site and U6 snRNA. By lengthening the U1:5' splice site duplex, we impeded this switch in a temperature-dependent manner and prevented formation of the spliceosome's catalytic core. Using genetics, we identified the DExD/H box protein Prp28p as a potential mediator of the switch. In vitro, the switch requires both Prp28p and ATP. We propose that Prp28p directs isomerization of RNA at the 5' splice site and promotes fidelity in splicing.  相似文献   

2.
Kuhn AN  Li Z  Brow DA 《Molecular cell》1999,3(1):65-75
The pre-mRNA 5' splice site is recognized by the ACAGA box of U6 spliceosomal RNA prior to catalysis of splicing. We previously identified a mutant U4 spliceosomal RNA, U4-cs1, that masks the ACAGA box in the U4/U6 complex, thus conferring a cold-sensitive splicing phenotype in vivo. Here, we show that U4-cs1 blocks in vitro splicing in a temperature-dependent, reversible manner. Analysis of splicing complexes that accumulate at low temperature shows that U4-cs1 prevents U4/U6 unwinding, an essential step in spliceosome activation. A novel mutation in the evolutionarily conserved U5 snRNP protein Prp8 suppresses the U4-cs1 growth defect. We propose that wild-type Prp8 triggers unwinding of U4 and U6 RNAs only after structurally correct recognition of the 5' splice site by the U6 ACAGA box and that the mutation (prp8-201) relaxes control of unwinding.  相似文献   

3.
The binding of a U1 small nuclear ribonucleoprotein (snRNP) particle to the 5' splice site region of a pre-mRNA is a primary step of intron recognition. In this report, we identify a novel 75-kDa polypeptide of Saccharomyces cerevisiae, Prp39p, necessary for the stable interaction of mRNA precursors with the snRNP components of the pre-mRNA splicing machinery. In vivo, temperature inactivation or metabolic depletion of Prp39p blocks pre-mRNA splicing and causes growth arrest. Analyses of cell extracts reveal a specific and dramatic increase in the electrophoretic mobility of the U1 snRNP particle upon Prp39p depletion and demonstrate that extracts deficient in Prp39p activity are unable to form either the CC1 or CC2 commitment complex band characteristic of productive U1 snRNP/pre-mRNA association. Immunological studies establish that Prp39p is uniquely associated with the U1 snRNP and is recruited with the U1 snRNP into splicing complexes. On the basis of these and related observations, we propose that Prp39p functions, at least in part, prior to stable branch point recognition by the U1 snRNP particle to facilitate or stabilize the U1 snRNP/5' splice site interaction.  相似文献   

4.
Activation of the spliceosome involves a major structural change in the spliceosome, including release of U1 and U4 small nuclear ribonucleoprotein particles and the addition of a large protein complex, the Prp19-associated complex. We previously showed that the Prp19-associated complex is required for stable association of U5 and U6 with the spliceosome after U4 is released. Changes within the spliceosome upon binding of the Prp19-associated complex include remodeling of the U6/5' splice site interaction and destabilization of Lsm proteins to allow further interaction of U6 with the intron sequence. Here, we further analyzed interactions of U5 and U6 with pre-mRNA at various stages of spliceosome assembly from initial binding of tri-small nuclear ribonucleoprotein complex to the activated spliceosome to reveal stepwise changes of interactions. We demonstrate that both U5 and U6 interacted with pre-mRNA in dynamic manners spanning over a large region of U6 and the 5' exon sequences prior to the activation of the spliceosome. During spliceosome activation, interactions were locked down to small regions, and the Prp19-associated complex was required for defining the specificity of interaction of U5 and U6 with the 5' splice site to stabilize their association with the spliceosome after U4 is dissociated.  相似文献   

5.
The U1 small nuclear ribonucleoprotein (U1 snRNP) binds to the pre-mRNA 5' splice site (ss) at early stages of spliceosome assembly. Recruitment of U1 to a class of weak 5' ss is promoted by binding of the protein TIA-1 to uridine-rich sequences immediately downstream from the 5' ss. Here we describe a molecular dissection of the activities of TIA-1. RNA recognition motifs (RRMs) 2 and 3 are necessary and sufficient for binding to the pre-mRNA. The non- consensus RRM1 and the C-terminal glutamine-rich (Q) domain are required for association with U1 snRNP and to facilitate its recruitment to 5' ss. Co-precipitation experiments revealed a specific and direct interaction involving the N-terminal region of the U1 protein U1-C and the Q-rich domain of TIA-1, an interaction enhanced by RRM1. The results argue that binding of TIA-1 in the vicinity of a 5' ss helps to stabilize U1 snRNP recruitment, at least in part, via a direct interaction with U1-C, thus providing one molecular mechanism for the function of this splicing regulator.  相似文献   

6.
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-specific crosslinking showed that Snu114p contacts the 5' side of internal loop 1, whereas Prp8p interacts with five different regions of the 5' stem-loop, but not with the Sm site or 3' stem-loop. Both internal loops in the 5' domain are essential for Prp8p to associate with the snRNP, but the conserved loop 1 is not, although this is the region to which Prp8p crosslinks most strongly. The extensive contacts between Prp8p and the 5' stem-loop of U5 RNA support the hypothesis that, in spliceosomes, Prp8p stabilizes loop 1-exon interactions. Moreover, data showing that Prp8p contacts the exons even in the absence of loop 1 indicate that Prp8p may be the principal anchoring factor for exons in the spliceosome. This and the close proximity of the spliceosomal translocase, Snu114p, to U5 loop 1 and Prp8p support and extend the proposal that Snu114p mimics U5 loop 1 during a translocation event in the spliceosome.  相似文献   

7.
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-specific crosslinking showed that Snu114p contacts the 5' side of internal loop 1, whereas Prp8p interacts with five different regions of the 5' stem-loop, but not with the Sm site or 3' stem-loop. Both internal loops in the 5' domain are essential for Prp8p to associate with the snRNP, but the conserved loop 1 is not, although this is the region to which Prp8p crosslinks most strongly. The extensive contacts between Prp8p and the 5' stem-loop of U5 RNA support the hypothesis that, in spliceosomes, Prp8p stabilizes loop 1-exon interactions. Moreover, data showing that Prp8p contacts the exons even in the absence of loop 1 indicate that Prp8p may be the principal anchoring factor for exons in the spliceosome. This and the close proximity of the spliceosomal translocase, Snu114p, to U5 loop 1 and Prp8p support and extend the proposal that Snu114p mimics U5 loop 1 during a translocation event in the spliceosome.  相似文献   

8.
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.  相似文献   

9.
10.
We have defined the nucleotide sequence of a protein-binding domain within U1 RNA that specifically recognizes and binds both to a U1 small nuclear ribonucleoprotein component (the 70K protein) and to the previously defined RNA-binding domain of the 70K protein. We have investigated direct interactions between purified U1 RNA and 70K protein by reconstitution in vitro. Thirty-one nucleotides of U1 RNA, corresponding to stem-loop I, were required for this interaction. Nucleotides at the 5' end of U1 RNA that are involved in base pairing with the 5' splice site of pre-mRNA were not required for binding. In contrast to other reports, these findings demonstrate that a specific domain of U1 RNA can bind directly to the 70K protein independently of any other snRNP-associated proteins.  相似文献   

11.
A series of efficiently spliced pre-mRNA substrates containing single 4-thiouridine residues were used to monitor RNA-protein interactions involving the branch site-3' splice site-3' exon region during yeast pre-mRNA splicing through cross-linking analysis. Prior to the assembly of the prespliceosome, Mud2p and the branch point bridging protein cross-link to a portion of this region in an ATP-independent fashion. Assembly of the prespliceosome leads to extensive cross-linking of the U2-associated protein Hsh155p to this region. Following the first step of splicing and in a manner independent of Prp16p, the U5 small nuclear ribonucleoprotein particle-associated protein Prp8p also associates extensively with the branch site-3' splice site-3' exon region. The subsequent cross-linking of Prp16p to the lariat intermediate is restricted to the 3' splice site and the adjacent 3' exon sequence. Using modified substrates to either mutationally or chemically block the second step, we found that the association of Prp22p with the lariat intermediate represents an authentic transient intermediate and appears to be restricted to the last eight intron nucleotides. Completion of the second step leads to the cross-linking of an unidentified approximately 80-kDa protein near the branch site sequence, suggesting a potential role for this protein in a later step in intron metabolism. Taken together, these data provide a detailed portrayal of the dynamic associations of proteins with the branch site-3' splice site region during spliceosome assembly and catalysis.  相似文献   

12.
We show that addition of SR proteins to in vitro splicing extracts results in a significant increase in assembly of the earliest prespliceosomal complex E and a corresponding decrease in assembly of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex H. In addition, SR proteins promote formation of the E5' and E3' complexes that assemble on RNAs containing only 5' and 3' splice sites, respectively. We conclude that SR proteins promote the earliest specific recognition of both the 5' and 3' splice sites and are limiting for this function in HeLa nuclear extracts. Using UV cross-linking, we demonstrate specific, splice site-dependent RNA-protein interactions of SR proteins in the E, E5', and E3' complexes. SR proteins do not UV cross-link in the H complex, and conversely, hnRNP cross-linking is largely excluded from the E-type complexes. We also show that a discrete complex resembling the E5' complex assembles on both purine-rich and non-purine-rich exonic splicing enhancers. This complex, which we have designated the Enhancer complex, contains U1 small nuclear RNP (snRNP) and is associated with different SR protein family members, depending on the sequence of the enhancer. We propose that both downstream 5' splice site enhancers and exonic enhancers function by establishing a network of pre-mRNA-protein and protein-protein interactions involving U1 snRNP, SR proteins, and U2AF that is similar to the interactions that bring the 5' and 3' splice sites together in the E complex.  相似文献   

13.
Pre-mRNA 5' splice site activity depends, at least in part, on base complementarity to U1 small nuclear RNA. In transient coexpression assays, defective 5' splice sites can regain activity in the presence of U1 carrying compensatory changes, but it is unclear whether such mutant U1 RNAs can be permanently expressed in mammalian cells. We have explored this issue to determine whether U1 small nuclear RNAs with altered specificity may be of value to rescue targeted mutant genes or alter pre-mRNA processing profiles. This effort was initiated following our observation that U1 with specificity for a splice site associated with an alternative H-ras exon substantially reduced the synthesis of the potentially oncogenic p21ras protein in transient assays. We describe the development of a mammalian complementation system that selects for removal of a splicing-defective intron placed within a drug resistance gene. Complementation was observed in proportion to the degree of complementarity between transfected mutant U1 genes and different defective splice sites, and all cells selected in this manner were found to express mutant U1 RNA. In addition, these cells showed specific activation of defective splice sites presented by an unlinked reporter gene. We discuss the prospects of this approach to permanently alter the expression of targeted genes in mammalian cells.  相似文献   

14.
For the second catalytic step of pre-mRNA splicing to occur, a 3' splice site must be selected and juxtaposed with the 5' exon. Four proteins, Prp16p, Slu7p, Prp17p, Prp18p, and an integral spliceosomal protein, Prp8p, are known to be required for the second catalytic step. prp8-101, an allele of PRP8 defective in 3' splice site recognition, exhibits specific genetic interactions with mutant alleles of the other second step splicing factors. The prp8-101 mutation also results in decreased crosslinking of Prp8p to the 3' splice site. To determine the role of the step-two-specific proteins in 3' splice site recognition and in binding of Prp8p to the 3' splice site, we performed crosslinking studies in mutant and immunodepleted extracts. Our results suggest an ordered pathway in which, after the first catalytic step, Prp16p crosslinks strongly to the 3' splice site and Prp8p and Slu7p crosslink weakly. ATP hydrolysis by Prp16p affects a conformational change that reduces the crosslinking of Prp16p with the 3' splice site and allows stronger crosslinking of Prp8p and Slu7p. Thus, the 3' splice site appears to be recognized in two stages during the second step of splicing. Strong 3' splice site crosslinking of Prp8p and Slu7p also requires the functions of Prp17p and Prp18p. Therefore, Prp8p and Slu7p interact with the 3' splice site at the latest stage of splicing prior to the second catalytic step that can currently be defined, and may be at the active site.  相似文献   

15.
Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.  相似文献   

16.
Pre-mRNA binding to the yeast U2 small nuclear ribonucleoprotein (snRNP) during prespliceosome formation requires ATP hydrolysis, the highly conserved UACUAAC box of the branch point region of the pre-mRNA, and several factors. Here we analyzed the binding of a radiolabeled 2'-O-methyl oligonucleotide complementary to U2 small nuclear RNA to study interactions between the UACUAAC box, U2 snRNP, and Prp5p, a DEAD box protein necessary for prespliceosome formation. Binding of the 2'-O-methyl oligonucleotide to the U2 snRNP in yeast cell extract was assayed by gel electrophoresis. Binding was rapid, enhanced by ATP, and dependent on the integrity and conformation of the U2 snRNP. It was also stimulated by Prp5p that was found to associate physically with U2 snRNP. In vitro heat inactivation of the temperature-sensitive prp5-1 mutant extract decreased oligonucleotide binding to U2 and the ATP enhancement of binding by 3-fold. Furthermore, the temperature-sensitive prp5-1 mutation maps to the ATP-binding motif I within the helicase-like domain. Thus the catalytic activity of Prp5p likely promotes a conformational change in the U2 snRNP.  相似文献   

17.
A sensitive assay based on competition between cis-and trans-splicing suggested that factors in addition to U1 snRNP were important for early 5' splice site recognition. Cross-linking and physical protection experiments revealed a functionally important interaction between U4/U6.U5 tri-snRNP and the 5' splice site, which unexpectedly was not dependent upon prior binding of U2 snRNP to the branch point. The early 5' splice site/tri-snRNP interaction requires ATP, occurs in both nematode and HeLa cell extracts, and involves sequence-specific interactions between the highly conserved splicing factor Prp8 and the 5' splice site. We propose that U1 and U5 snRNPs functionally collaborate to recognize and define the 5' splice site prior to establishment of communication with the 3' splice site.  相似文献   

18.
19.
Previous work demonstrated that U1 small nuclear ribonucleoprotein particle (snRNP), bound to a downstream 5' splice site, can positively influence utilization of an upstream 3' splice site via exon definition in both trans- and cis-splicing systems. Although exon definition results in the enhancement of splicing of an upstream intron, the nature of the factors involved has remained elusive. We assayed the interaction of U1 snRNP as well as the positive effect of a downstream 5' splice site on trans-splicing in nematode extracts containing either inactive (early in development) or active (later in development) serine/arginine-rich splicing factors (SR proteins). We have determined that U1 snRNP interacts with the 5' splice site in the downstream exon even in the absence of active SR proteins. In addition, we determined that U1 snRNP-directed loading of U2 snRNP onto the branch site as well as efficient trans-splicing in these inactive extracts could be rescued upon the addition of active SR proteins. Identical results were obtained when we examined the interaction of U1 snRNP as well as the requirement for SR proteins in communication across a cis-spliced intron. Weakening of the 3' splice site uncovered distinct differences, however, in the ability of U1 snRNP to promote U2 addition, dependent upon its position relative to the branch site. These results demonstrate that SR proteins are required for communication between U1 and U2 snRNPs whether this interaction is across introns or exons.  相似文献   

20.
Highly purified mammalian spliceosomal complex B contains more than 30 specific protein components. We have carried out UV cross-linking studies to determine which of these components directly contacts pre-mRNA in purified prespliceosomal and spliceosomal complexes. We show that heterogeneous nuclear ribonucleoproteins cross-link in the nonspecific complex H but not in the B complex. U2AF65, which binds to the 3' splice site, is the only splicing factor that cross-links in purified prespliceosomal complex E. U2AF65 and the U1 small nuclear ribonucleoprotein particle (snRNP) are subsequently destabilized, and a set of six spliceosome-associated proteins (SAPs) cross-links to the pre-mRNA in the prespliceosomal complex A. These proteins require the 3' splice site for binding and cross-link to an RNA containing only the branch site and 3' splice site. Significantly, all six of these SAPs are specifically associated with U2 snRNP. These proteins and a U5 snRNP component cross-link in the fully assembled B complex. Previous work detected an ATP-dependent, U2 snRNP-associated factor that protects a 30- to 40-nucleotide region surrounding the branchpoint sequence from RNase digestion. Our data indicate that the six U2 snRNP-associated SAPs correspond to this branchpoint protection factor. Four of the snRNP proteins that are in intimate contact with the pre-mRNA are conserved between Saccharomyces cerevisiae and humans, consistent with the possibility that these factors play key roles in mediating snRNA-pre-mRNA interactions during the splicing reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号