首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RNA of the Escherichia coli RNA phages is highly structured with 75% of the nucleotides estimated to take part in base-pairing. We have used enzymatic and chemical sensitivity of nucleotides, phylogenetic sequence comparison and the phenotypes of constructed mutants to develop a secondary structure model for the central region (900 nucleotides) of the group I phage MS2. The RNA folds into a number of, mostly irregular, helices and is further condensed by several long-distance interactions. There is substantial conservation of helices between the related groups I and II, attesting to the relevance of discrete RNA folding. In general, the secondary structure is thought to be needed to prevent annealing of plus and minus strand and to confer protection against RNase. Superimposed, however, are features required to regulate translation and replication. The MS2 RNA section studied here contains three translational start sites, as well as the binding sites for the coat protein and the replicase enzyme. Considering the density of helices along the RNA, it is not unexpected to find that all these sites lie in helical regions. This fact, however, does not mean that these sites are recognized as secondary structure elements by their interaction partners. This holds true only for the coat protein binding site. The other four sites function in the unfolded state and the stability of the helix in which they are contained serves to negatively control their accessibility. Mutations that stabilize helices containing ribosomal binding sites reduce their efficiency and vice versa. Comparison of homologous helices in different phage RNAs indicates that base substitutions have occurred in such a way that the thermodynamic stability of the helix is maintained. The evolution of individual helices shows several distinct size-reduction patterns. We have observed codon deletions from loop areas and shortening of hairpins by base-pair deletions from either the bottom, the middle or the top of stem structures. Evidence for the coaxial stacking of some helical segments is discussed.  相似文献   

2.
3.
The structural requirements for assembly of functional class II transfer RNA core regions have been examined by sequence analysis and tested by reconstruction of alternative folds into the tertiary domain of Escherichia coli tRNA(2)Gln. At least four distinct designs have been identified that permit stable folding and efficient synthetase recognition, as assessed by thermal melting profiles and glutaminylation kinetics. Although most large variable-arm tRNAs found in nature possess an enlarged D-loop, lack of this feature can be compensated for by insertion of nucleotides either 3' to the variable loop or within the short acceptor/D-stem connector region. Rare pyrimidines at nt 9 in the core region can be accommodated in the class II framework, but only if specific nucleotides are present either in the D-loop or 3' to the variable arm. Glutaminyl-tRNA synthetase requires one or two unpaired uridines 3' to the variable arm to efficiently aminoacylate several of the class II frameworks. Because there are no specific enzyme contacts in the tRNAGln core region, these data suggest that tRNA discrimination by GlnRS depends in part on indirect readout of RNA sequence information.  相似文献   

4.
Parsch J  Braverman JM  Stephan W 《Genetics》2000,154(2):909-921
A novel method of RNA secondary structure prediction based on a comparison of nucleotide sequences is described. This method correctly predicts nearly all evolutionarily conserved secondary structures of five different RNAs: tRNA, 5S rRNA, bacterial ribonuclease P (RNase P) RNA, eukaryotic small subunit rRNA, and the 3' untranslated region (UTR) of the Drosophila bicoid (bcd) mRNA. Furthermore, covariations occurring in the helices of these conserved RNA structures are analyzed. Two physical parameters are found to be important determinants of the evolution of compensatory mutations: the length of a helix and the distance between base-pairing nucleotides. For the helices of bcd 3' UTR mRNA and RNase P RNA, a positive correlation between the rate of compensatory evolution and helix length is found. The analysis of Drosophila bcd 3' UTR mRNA further revealed that the rate of compensatory evolution decreases with the physical distance between base-pairing residues. This result is in qualitative agreement with Kimura's model of compensatory fitness interactions, which assumes that mutations occurring in RNA helices are individually deleterious but become neutral in appropriate combinations.  相似文献   

5.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

6.
7.
tRNA-like properties of tobacco rattle virus RNA.   总被引:5,自引:5,他引:0       下载免费PDF全文
The 3' terminal forty nucleotides of tobraviral RNAs readily fold into a tertiary structure, resembling that of tymo- and tobamoviral RNAs. The latter RNAs possess a tRNA-like structure at their 3' end that is recognized by a number of tRNA-specific enzymes (Rietveld et al. (1984), EMBO J. 3, 2613-2619). Characteristic for their aminoacyl acceptor arm is the presence of a so-called pseudoknot which we now also find in a corresponding position at the 3' terminus of TRV RNA2 (PSG strain). The nucleotide sequences of all tobraviral RNAs analysed so far indicate that they all possess a similar 3' terminal structure. A domain resembling the anticodon arm of canonical tRNA is not readily recognizable. TRV RNA2 can be adenylated with CTP, ATP; tRNA nucleotidyl transferase and ATP. It is unable, however, to accept any of the twenty common amino acids when incubated with ATP and aminoacyl-tRNA synthetases from wheat germ or yeast. We conclude that TRV RNA contains a tRNA-like structure, which, in contrast to the tymo- and tobamoviral tRNA-like structures, cannot be aminoacylated. It is unlikely therefore, that aminoacylation of plant viral RNAs with a tRNA-like structure is a prerequisite for viral RNA replication.  相似文献   

8.
9.
A ribosome undergoes significant conformational changes during elongation of polypeptide chain that are correlated with structural changes of rRNAs. We tested nine different antisense oligodeoxynucleotides complementary to the selected, highly conserved sequences of Lupinus luteus 26S rRNA that are engaged in the interactions with tRNA molecules. The ribosomes were converted either to pre- or to posttranslocational states, with or without prehybridized oligonucleotides, using tRNA or mini-tRNA molecules. The activity of those ribosomes was tested via the so-called binding assay. We observed well-defined structural changes of ribosome's conformation during different steps of the elongation cycle of protein biosynthesis. In this article, we present that (i) before and after translocation, fragments of domain V between helices H70/H71 and H74/H89 do not have to interact with nucleotides 72-76 of the acceptor arm of A-site tRNA; (ii) helix H69 does not have to interact with DHU arm of tRNA in positions 25 and 26 after forming the peptide bond, but before translocation; (iii) helices H69 and H70 interact weakly with nucleotides 11, 12, 25, and 26 of A-site tRNA before forming a peptide bond in the ribosome; (iv) interactions between helices H80, H93 and single-stranded region between helices H92 and H93 and CCAend of P-site tRNA are necessary at all steps of elongation cycle; and (v) before and after translocation, helix H89 does not have to interact with nucleotides in positions 64-65 and 50-53 of A-site tRNA TPsiC arm.  相似文献   

10.
11.
12.
The primary nucleotide sequence of an Escherichia coli tRNA precursor molecule has been determined. This precursor RNA, specified by the transducing phage lambdah80dglyTsuA36 thrT tyrT, accumulates in a mutant strain temperature-sensitive for RNase P activity. The 170-nucleotide precursor RNA is processed by E. coli extracts to form mature tRNA Gly 2 suA36 and tRNA Thr ACU/C. The sequence of the precursor is pG-U-U-C-C-A-G-G-A-U-G-C-G-G-G-C-A-U-C-G-U-A-U-A-A-U-G-G-C-U-A-U-U-A-C-C-U-C-A-G-C-C-U-N-C-U-A-A-G-C-U-G-A-U-G-A-U-G-C-G-G-G-T-psi-C-G-A-U-U-C-C-C-G-C-U-G-C-C-C-G-C-U-C-C-A-A-G-A-U-G-U-G-C-U-G-A-U-A-U-A-G-C-U-C-A-G-D-D-G-G-D-A-G-A-G-C-G-C-A-C-C-C-U-U-G-G-U-mt6A-A-G-G-G-U-G-A-G-m7G-U-C-G-G-C-A-G-T-psi-C-G-A-A-U-C-U-G-C-C-U-A-U-C-A-G-C-A-C-C-A-C-U-UOH(tRNA sequences are italicized). It contains the entire primary nucleotide sequences of tRNA Gly2 suA36 and tRNA Thr ACU/C, including the common 3'-terminal sequence, CCA. Nineteen additional nucleotides are present, with 10 at the 5' end, 3 at the 3' end, and the remaining 6 in the inter-tRNA spacer region. RNase P cleaves the precursor specifically at the 5' ends of the mature tRNA sequences.  相似文献   

13.
M Frugier  C Florentz    R Giegé 《The EMBO journal》1994,13(9):2218-2226
We show here that small RNA helices which recapitulate part or all of the acceptor stem of yeast aspartate tRNA are efficiently aminoacylated by cognate class II aspartyl-tRNA synthetase. Aminoacylation is strongly dependent on the presence of the single-stranded G73 'discriminator' identity nucleotide and is essentially insensitive to the sequence of the helical region. Substrates which contain as few as 3 bp fused to G73CCAOH are aspartylated. Their charging is insensitive to the sequence of the loop closing the short helical domains. Aminoacylation of the aspartate mini-helix is not stimulated by a hairpin helix mimicking the anticodon domain and containing the three major anticodon identity nucleotides. A thermodynamic analysis demonstrates that enzyme interactions with G73 in the resected RNA substrates and in the whole tRNA are the same. Thus, if the resected RNA molecules resemble in some way the earliest substrates for aminoacylation with aspartate, then the contemporary tRNA(Asp) has quantitatively retained the influence of the major signal for aminoacylation in these substrates.  相似文献   

14.
15.
The 104 nucleotides long 3' terminal region of TMV RNA was shown previously to contain two pseudoknotted structures (Rietveld et al. (1984), EMBO J. 3, 2613-2619). We here present evidence for the occurrence, within the 204 nucleotides long 3' noncoding region, of another highly structured domain located immediately adjacent to the tRNA-like structure of 95 nucleotides (Joshi et al. (1985) Nucleic Acids Res. 13, 347-354). A model for the three-dimensional folding of this region, containing three more pseudoknots, is proposed on the basis of chemical modification and enzymatic digestion. The existence of these three consecutive pseudoknots was supported by sequence comparisons with the RNA from the related tobamoviruses TMV-L, CcTMV and CGMMV. Coaxial stacking of the six double helical segments involved gives rise to the formation of a 25 basepair long quasi-continuous double helix. The results show that the three-dimensional folding of the 3' non-translated region of tobamoviral RNAs is largely maintained by the formation of five pseudoknots. The organisation of this region in the RNA of the tobamovirus CcTMV suggests that recombinational events among aminoacylatable plant viral RNAs have to be considered.  相似文献   

16.
We have performed a deletion and mutational analysis of the catalytic ribonuclease (RNase) P RNA subunit from the extreme thermophilic eubacterium Thermus thermophilus HB8. Catalytic activity was reduced 600-fold when the terminal helix, connecting the 5' and 3' ends of the molecule, was destroyed by deleting 15 nucleotides from the 3' end. In comparison, the removal of a large portion (94 nucleotides, about one quarter of the RNA) of the upper loop region impaired function only to a relatively moderate extent (400-fold reduction in activity). The terminal helix appears to be crucial for the proper folding of RNase P RNA, possibly by orientating the adjacent universally conserved pseudoknot structure. The region containing the lower half of the pseudoknot structure was shown to be a key element for enzyme function, as was the region of nucleotides 328-335. Deleting a conserved hairpin (nucleotides 304-327) adjacent to this region and replacing the hairpin by a tetranucleotide sequence or a single cytidine reduced catalytic activity only 6-fold, whereas a simultaneous mutation of the five highly conserved nucleotides in the region of nucleotides 328-335 reduced catalytic activity by > 10(5)-fold. The two strictly conserved adenines 244 and 245 (nucleotides 248/249 in Escherichia coli RNase P RNA) were not as essential for enzyme function as suggested by previous data. However, additional disruption of two helical segments (nucleotides 235-242) adjacent to nucleotides 244 and 245 reduced activity by > 10(4)-fold, supporting the notion that nucleotides in this region are also part of the active core structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
23 S RNA narnavirus is a persistent positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome is small (2.9 kb) and only encodes its RNA-dependent RNA polymerase. Recently, we have succeeded in generating 23 S RNA virus from an expression vector containing the entire viral cDNA sequence. Using this in vivo launching system, we analyzed the 3'-cis-acting signals for replication. The 3'-non-coding region of 23 S RNA contains two cis-elements. One is a stretch of 4 Cs at the 3' end, and the other is a mismatched pair in a stem-loop structure that partially overlaps the terminal 4 Cs. In the latter element, the loop or stem sequence is not important but the stem structure with the mismatch pair is essential. The mismatched bases should be purines. Any combination of purines at the mismatch pair bestowed capability of replication on the RNA, whereas converting it to a single bulge at either side of the stem abolished the activity. The terminal and penultimate Cs at the 3' end could be eliminated or modified to other nucleotides in the launching plasmid without affecting virus generation. However, the viruses generated regained or restored these Cs at the 3' terminus. Considering the importance of the viral 3' ends in RNA replication, these results suggest that this 3' end repair may contribute to the persistence of 23 S RNA virus in yeast by maintaining the genomic RNA termini intact. We discuss possible mechanisms for this 3' end repair in vivo.  相似文献   

18.
The modification of RNA nucleotide bases, a fundamental process in all cells, alters the chemical and physical properties of RNA molecules and broadly impacts the physiological properties of cells. tRNA molecules are by far the most diverse-modified RNA species within cells, containing as a group >80% of the known 96 chemically unique nucleic acid modifications. The greatest varieties of modifications are located on residue 37 and play a role in ensuring fidelity and efficiency of protein synthesis. The enzyme dimethylallyl (Delta(2)-isopentenyl) diphosphate:tRNA transferase catalyzes the addition of a dimethylallyl group to the exocyclic amine nitrogen (N6) of A(37) in several tRNA species. Using a 17 residue oligoribonucleotide corresponding to the anticodon arm of Escherichia coli tRNA(Phe), we have investigated the structural and dynamic changes introduced by the dimethylallyl group. The unmodified RNA molecule adopts stem-loop conformation composed of seven base-pairs and a compact three nucleotide loop. This conformation is distinctly different from the U-turn motif that characterizes the anticodon arm in the X-ray crystal structure of the fully modified yeast tRNA(Phe). The adoption of the tri-nucleotide loop by the purine-rich unmodified tRNA(Phe) anticodon arm suggests that other anticodon sequences, especially those containing pyrimidine bases, also may favor a tri-loop conformation. Introduction of the dimethylallyl modification increases the mobility of nucleotides of the loop region but does not dramatically alter the RNA conformation. The dimethylallyl modification may enhance ribosome binding through multiple mechanisms including destabilization of the closed anticodon loop and stabilization of the codon-anticodon helix.  相似文献   

19.
20.
The 3' terminus of TYMV RNA, which possesses tRNA-like properties, has been studied. A 3' terminal fragment of 112 nucleotides was obtained by cleavage with RNase H after hybridization of a synthetic oligodeoxynucleotide to the viral RNA. The accessibility of cytidine and adenosine residues was probed with chemical modification. Enzymatic digestion studies were performed with RNase T1, nuclease S1 and the double-strand specific RNase from the venom of the cobra Naja naja oxiana. A model is proposed for the secondary structure of the 3' terminal region of TYMV RNA comprising 86 nucleotides. The main feature of this secondary structure is the absence of a conventional acceptor stem as present in canonical tRNA. However, the terminal 42 nucleotides can be folded in a tertiary structure which bears strong resemblance with the acceptor arm of canonical tRNA. Comparison of this region of TYMV RNA with that of other RNAs from both the tymovirus group and the tobamovirus group gives support to our proposal for such a three-dimensional arrangement. The consequences for the recognition by TYMV RNA of tRNA-specific enzymes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号