首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical and hydroxyl radical (*OH) scavenging activity changes of ginsenoside Rb(1) (Rb(1)) by heat processing were investigated in this study. Rb(1) was changed into 20(S)-Rg(3), 20(R)-Rg(3), Rk(1), and Rg(5) by heat processing through glucosyl elimination and epimerization of carbon-20 by SN1 reaction. The glucosyl moiety, separated from Rb(1), made Maillard reaction product (MRPs) with glycine. The generations of 20(S)-Rg(3) and MRPs were related to the increased OH scavenging activity of Rb(1) by heat processing.  相似文献   

2.
Ginsenosides are the active ingredients of Panax ginseng. Ginsenoside Rg(3) exists as two stereoisomers of carbon-20: 20-S-protopanaxatriol-3-[O-beta-d-glucopyranosyl (1-->2)-beta-glucopyranoside] (20(S)-Rg(3)) and 20-R-protopanaxatriol-3-[O-beta-d-glucopyranosyl (1-->2)-beta-glucopyranoside] (20(R)-Rg(3)). Recently, we reported that 20(S)-Rg(3) regulates voltage-dependent Ca(2+) channel activity and several types of ligand-gated ion channels, whereas 20(R)-Rg(3) does not have this activity. In this study, we investigated the structure-activity relationship of these two stereoisomers by NMR spectroscopy and by measurement of the current in Xenopus oocytes expressing the mouse cardiac voltage-dependent Na(+) channel (Na(v)1.5). We found that 20(S)-Rg(3) but not 20(R)-Rg(3) inhibited Na(+) channel current in a dose- and voltage-dependent manner. The difference between Rg(3) epimers in voltage-dependent ion channel regulation indicates that the structure of 20(S)-Rg(3) may be geometrically better aligned than that of 20(R)-Rg(3) for interaction with receptor regions in Na(+) channels. The (1)H and (13)C NMR chemical shifts, including all hydroxyl protons of 20(S)-Rg(3) and 20(R)-Rg(3), were completely assigned, and their tertiary structures were determined. 20(S)-Rg(3) has more tight hydrophobic packing near the chiral center than 20(R)-Rg(3). Tertiary structures and activities of 20(S)-Rg(3) and 20(R)-Rg(3) indicate that 20(S)-Rg(3) may have stronger interactions with the receptor region in ion channels than 20(R)-Rg(3). This may result in different stereoselectivity of Rg(3) stereoisomers in the regulation of voltage-dependent Na(+) channel activity. This is the first structural approach to ginsenoside action on ion channel.  相似文献   

3.
Ginsenosides (20S)-Rg3 and (20R)-Rg3 are famous rare ginsenosides from red ginseng, and their configurations in C-20 are different. This study aimed to investigate the protective mechanism of ginsenosides (20S)-Rg3 and (20R)-Rg3 on H2O2-induced H9C2 cells and compare their activity. The results showed that the ginsenosides (20S)-Rg3 and (20R)-Rg3 could increase the cell activity and the levels of GSH-Px, SOD and CAT, and decrease activities of LDH, MDA and ROS. Further studies showed that ginsenosides (20S)-Rg3 and (20R)-Rg3 could prevent oxidative stress injury of H9C2 cells by H2O2 through the Keap-1/Nrf2/HO-1 pathway. But the ML385 counteracts these effects. Interestingly, among these results, ginsenoside (20R)-Rg3 was superior to (20S)-Rg3, indicating that ginsenoside (20R)-Rg3 have a stronger effect of antioxidative stress. This study reflected that ginsenoside (20R)-Rg3 could be used as a potential Nrf2 activator and a safe effective Chinese herbal monomer in the treatment of cardiovascular disease.  相似文献   

4.
20(S)-protopanaxadiol (PPD(S)) and 20(R)-protopanaxadiol (PPD(R)), the main metabolites of ginsenosides Rg3(S) and Rg3(R) in black ginseng, are potential candidates for anti-cancer therapy due to their pharmacological activities such as anti-tumor properties. In the present study, we report the preparation of PPD(S, R) by a combination of steaming and biotransformation treatments from ginseng. Aspergillus niger was isolated from soil and showed a strong ability to transform Rg3(S, R) into PPD(S, R) with 100% conversion. Furthermore, the enzymatic reactions were analyzed by reversed-phase HPLC, showing the biotransformation pathways: Rg3(S) → Rh2(S) → PPD(S) and Rg3(R) → Rh2(R) → PPD(R), respectively. In addition, 12 ginsenosides including 3 pairs of epimers, namely Rg3(S), Rg3(R), Rh2(S), Rh2(R), PPD(S) and PPD(R), were simultaneously determined by reversed-phase HPLC. Our study may be highly applicable for the preparation of PPD(S) and PPD(R) for medicinal purposes and also for commercial use.  相似文献   

5.
Rg3 and Rh2 ginsenosides are primarily found in Korean red ginseng root (Panax ginseng C.A. Meyer) and valued for their bioactive properties. We quantified both Rh2 and Rg3 ginseng leaf and Rg3 from root extracts derived from North American ginseng (Panax quinquefolius). Quantification was obtained by application of HPLC with ion fragments detected using ESI-MS. Ginseng leaf contained 11.3+/-0.5 mg/g Rh2 and 7.5+/-0.9 mg/g Rg3 in concentrated extracts compared to 10.6+/-0.4 mg/g Rg3 in ginseng root. No detectable Rh2 was found in root extracts by HPLC, although it was detectable by ESI-MS analysis. Ginsenosides Rg3 and Rh2 were detected following hot water reflux extraction, but not from tissues extracted with 80% aqueous ethanol at room temperature. Therefore ginsenosides Rg3 and Rh2 are not naturally present in North American ginseng, but are products of a thermal process. Using ESI-MS analysis, it was found that formation of Rg3 and Rh2, among other compounds, were a function of heating time and were breakdown products of the more abundant ginsenosides Rb1 and Rc. Our findings that heat processed North American ginseng leaf is an excellent source of Rh2 ginsenoside is an important discovery considering that ginseng leaf material is obtainable throughout the entire plant cycle for recovery of valuable ginsenosides for pharmaceutical use.  相似文献   

6.
In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3   总被引:3,自引:0,他引:3  
Metabolism of an anti-tumor active component of Panax ginseng, ginsenoside (20R)-Rg(3), was studied for better understanding its pharmacokinetics in rat. LC-MS was used to determine Rg(3) and its metabolites in rat plasma, urine and feces samples. An average half-life of 18.5 min was obtained after the ginsenoside was intravenously dosed at 5 mg/kg. However, Rg(3) was not detected in rat plasma collected after oral administration at 100 mg/kg. Only 0.97-1.15% Rg(3) of the dosed amount was determined in feces. Hydrolysis and oxygenated metabolites were detected and identified in feces collected after oral administration by using LC-MS and MS-MS.  相似文献   

7.
From the stems and leaves of panax ginseng C. A. Meyer cultivatedin Liaoning, China, eleven saponins (L1–L11) were isolaed. Eight of them L5, L6, L7, L8, L9, L10, L11 were proved to be identical with ginsenosides-Rh1, -Rg3, -Rg2, Rg1, -Re, -Re, -Rb2, -Rb, respectively. The two of saponins L5 and L6 were obtained for the first from the stems and leaves of Panax ginseng C. A. Meyer. The structures of these saponins were determined on the basis of the FD-MS, 13C-NMR, and chemical evidences.  相似文献   

8.
Cheng LQ  Na JR  Bang MH  Kim MK  Yang DC 《Phytochemistry》2008,69(1):218-224
Ginseng saponin, the most important secondary metabolite in ginseng, has various pharmacological activities. Many studies have been directed towards converting major ginsenosides to the more active minor ginsenoside, Rg3. Due to the difficulty in preparing ginsenoside Rg3 enzymatically, the compound has been mainly produced by either acid treatment or heating. A microbial strain GS514 was isolated from soil around ginseng roots in a field and used for enzymatic preparation of the ginsenoside Rg3. Blast results of the 16S rRNA gene sequence of the strain GS514 established that the strain GS514 belonged to the genus Microbacterium. Its 16S rRNA gene sequence showed 98.7%, 98.4% and 96.1% identity with those of M. esteraromaticum, M. arabinogalactanolyticum and M. lacticum. Strain GS514 showed a strong ability to convert ginsenoside Rb1 or Rd into Rg3. Enzymatic production of Rg3 occurred by consecutive hydrolyses of the terminal and inner glucopyranosyl moieties at the C-20 carbon of ginsenoside Rb1 showing the biotransformation pathway: Rb1-->Rd-->Rg3.  相似文献   

9.
To increase the contents of medicinally effective ginsenosides, we used high-temperature and high-pressure thermal processing of ginseng by exposing it to microwave irradiation. To determine the anti-melanoma effect, the malignant melanoma SK-MEL-2 cell line was treated with an extract of microwave-irradiated ginseng. Microwave irradiation caused changes in the ginsenoside contents: the amounts of ginsenosides Rg1, Re, Rb1, Rb2, Rc, and Rd were disappeared, while those of less polar ginsenosides, such as Rg3, Rg5, and Rk1, were increased. In particular, the contents of Rk1 and Rg5 markedly increased. Melanoma cells treated with the microwave-irradiated ginseng extract showed markedly increased cell death. The results indicate that the microwave-irradiated ginseng extract induced melanoma cell death via the apoptotic pathway and that the cytotoxic effect of the microwave-irradiated ginseng extract is attributable to the increased contents of specific ginsenosides.  相似文献   

10.
Choi S  Lee JH  Oh S  Rhim H  Lee SM  Nah SY 《Molecules and cells》2003,15(1):108-113
Treatment with ginsenosides, major active ingredients of Panax ginseng, produces a variety of pharmacological or physiological responses with effects on the central and peripheral nervous systems. Recent reports showed that ginsenoside Rg2 inhibits nicotinic acetylcholine receptor-mediated Na+ influx and channel activity. In the present study, we investigated the effect of ginsenoside Rg2 on human 5-hydroxytryptamine3A (5-HT3A) receptor channel activity, which is also one of the ligand-gated ion channel families. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured using the two-electrode voltage clamp technique. The ginsenoside Rg2 itself had no effect on the oocytes that were injected with H2O as well as on the oocytes that were injected with the 5-HT3A receptor cRNA. In the oocytes that were injected with the 5-HT3A receptor cRNA, the pretreatment of ginsenoside Rg2 inhibited the 5-HT-induced inward peak current (I5-HT) The inhibitory effect of ginsenoside Rg2 on I5-HT was dose dependent and reversible. The half-inhibitory concentrations (IC50) of ginsenoside Rg2 was 22.3 +/- 4.6 microM. The inhibition of I5-HT by ginsenoside Rg2 was non-competitive and voltage-independent. These results indicate that ginsenoside Rg2 might regulate the 5-HT3A receptors that are expressed in Xenopus oocytes. Further, this regulation on the ligand-gated ion channel activity by ginsenosides might be one of the pharmacological actions of Panax ginseng.  相似文献   

11.
A ginseng pathogen, Cylindrocarpon destructans, and five nonpathogens were tested for their sensitivity to a total ginsenoside fraction (T-GF), a protopanaxadiol-type ginsenoside fraction (PPD-GF) and a protopanaxatriol-type ginsenoside fraction (PPT-GF) from the roots of Panax ginseng C.A. Meyer. The results showed that T-GF inhibited growth of the five ginseng nonpathogens, while it promoted growth of the ginseng pathogen C. destructans. PPT-GF and PPD-GF both inhibited the growth of the five ginseng nonpathogens, although the activity of PPT-GF was higher than that of PPD-GF. PPT-GF and PPD-GF exhibited different activities on C. destructans: PPT-GF inhibited its growth, whereas PPD-GF significantly enhanced its growth. The subsequent analysis of enzymatic degradation of ginsenosides by the test fungi showed that C. destructans can consecutively hydrolyze the terminal monosaccharide units from the sugar chains attached at C3 and C20 in PPD-type ginsenosides by extracellular glycosidase activity to yield four major products, gypenoside XVII (G-XVII), compound O, compound Mb and the ginsenoside F2. By contrast, the ginseng nonpathogens Aspergillus nidulans and Cladosporium fulvum have no extracellular glycosidase activity toward sugar chains attached to C3 in PPD-type ginsenosides. These results indicated that ginsenosides might act as host chemical defenses, while the ginseng root pathogenic fungi might counter their toxicity by converting PPD-type ginsenosides into growth or host recognition factors. The ability of ginseng root pathogens to deglycosylate PPD-type ginsenosides may be a pathogenicity factor.  相似文献   

12.
Yousef LF  Bernards MA 《Phytochemistry》2006,67(16):1740-1749
The role of ginseng saponins (ginsenosides) as modulators or inhibitors of disease is vague, but our earlier work supports the existence of an allelopathic relationship between ginsenosides and soilborne microbes. Interestingly, this allelopathy appears to significantly promote the growth of the important ginseng pathogen, Pythium irregulare while inhibiting that of an antagonistic non-pathogenic fungus, Trichoderma hamatum. Herein we report on the apparent selective metabolism of 20(S)-protopanaxadiol ginsenosides by an extracellular glycosidase from P. irregulare. Thus, when P. irregulare was cultured in the presence of a purified (> 90%) ginsenoside mixture, nearly all of the 20(S)-protopanaxadiol ginsenosides (Rb1, Rb2, Rc, Rd, and to a limited extent G-XVII) were metabolized into the minor ginsenoside F2, at least half of which appears to be internalized by the organism. No metabolism of the 20(S)-protopanaxatriol ginsenosides (Rg1 and Re) was evident. By contrast, none of the ginsenosides added to the culture medium of the non-pathogenic fungus T. hamatum were metabolized. The metabolism of 20(S)-protopanaxadiol ginsenosides by P. irregulare appears to occur through the hydrolysis of terminal monosaccharide units from disaccharides present at C-3 and/or C-20 of ginsenosides Rb1, Rc, Rb2, Rd and G-XVII to yield one major product, ginsenoside F2 and one minor product (possibly G-III). A similar transformation of ginsenosides was observed using a crude protein preparation isolated from the spent medium of P. irregulare cultures.  相似文献   

13.
It was found that a lactase preparation from Penicillium sp. nearly quantitatively hydrolyzed ginsenosides Re and Rg1, which are major saponins in roots of Panax ginseng, to a minor saponin, 20(S)-ginsenoside Rh1 [6-O-beta-D-glucopyranosyl-20(S)-protopanaxatriol]. This is the first report on the enzymatic preparation of ginsenoside Rh1 with a high efficiency. This enzyme also readily hydrolyzed ginsenoside Rg2 to ginsenoside Rh1.  相似文献   

14.
In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent Ca(2+) channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned Ca(2+) channel subtypes such as alpha(1C) (L)-, alpha(1B) (N)-, alpha(1A) (P/Q)-, a1E (R)- and a1G (T) have not been identified. Here, we used the two-microelectrode volt-age clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on Ba(2+) currents (IBa) in Xenopus oocytes expressing five different Ca(2+) channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the a1G-type. Of the various ginsenosides, Rb(1), Rc, Re, Rf, Rg(1), Rg(3), and Rh(2), ginsenoside Rg(3) also inhibited all five channel subtypes and ginsenoside Rh(2) had most effect on the a1C- and a1E-type Ca(2+) channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the a(1G)-type of Ca(2+) channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. Rg(3), Rh(2), and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the alpha(1B)- and alpha(1A)-types. These results reveal that Rg(3), Rh(2) and CK are the major inhibitors of Ca(2+) channels in Panax ginseng, and that they show some Ca(2+) channel selectivity.  相似文献   

15.
A thermostable β-xylosidase gene Tpexyl3 from Thermotoga petrophila DSM 13,995 was cloned and overexpressed by Escherichia coli. Recombinant Tpexyl3 was purified, and its molecular weight was approximately 86.7 kDa. Its optimal activity was exhibited at pH 6.0 and 90 °C. It had broad specificity to xylopyranosyl, arabinopyranosyl, arabinofuranosyl and glucopyranosyl moieties. The β-xylosidase activity of the recombinant Tpexyl3 was 6.81 U/mL in the LB medium and 151.4 U/mL in a 7.5 L bio-reactor. It was applied to transform ginsenoside extract into the pharmacologically active minor ginsenoside 20(S)-Rg3, which was combined with thermostable β-glucosidase Tpebgl3. After transforming under optimal condition, the 20 g/L of ginsenoside extract was transformed into 6.28 g/L of Rg3 within 90 min, with a corresponding molar conversion of 95.0% and Rg3 productivity of 1793.49 mg/L/h, respectively. This study is the highest report of a GH3 family glycosidase with arabinopyranosidase activity and also the first report on the high substrate concentration bioconversion of ginsenoside extract to ginsenoside 20(S)-Rg3 by using two thermostable glycosidases.  相似文献   

16.
To improve its bioavailability and pharmacological effects in humans, red ginseng was fermented with a newly isolated fungus, Monascus pilosus KMU103. Most of the ginsenosides were converted to deglycosylated ginsenocides, such as Rh(1), Rh(2), and Rg(3). The total amount of ginsenosides Rh(1), Rh(2), and Rg(3) was 838.7 mg/kg in the red ginseng, and increased to 4,117 mg/kg after 50 L fermentation in 13% red ginseng and 2% glucose. In addition, the Monascus-fermented red ginseng contained 3,089 mg/kg of monacolin K, one of the metabolites produced by Monascus known to reduce cholesterol in the blood. This newly developed Monascus-fermented red ginseng should result in improved health effects, not only by biotransforming gisenosides to deglycosylated ones but also by creating additional bioactive compounds.  相似文献   

17.
Most of the known pharmacological effects of Panax ginseng on the central nervous system are due to its major components - ginsenosides. Although the antioxidant ability of ginseng root has already been established, this activity has never been evaluated for isolated ginsenosides on astrocytes. The activity of protopanaxadiols Rb(1), Rb(2), Rc and Rd, and protopanaxatriols Re and Rg(1) was evaluated in vitro on astrocytes primary culture by means of an oxidative stress model with H(2)O(2). The viability of astrocytes was determined by the MTT reduction assay and by the LDH release into the incubation medium. The effects on the antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidases (GPx) and glutathione reductase (GR) and on the intracellular reactive oxygen species (ROS) formation were also investigated. Exposure of astrocytes to H(2)O(2) decreased cell viability as well as the antioxidant enzymes activity and increased ROS formation. Oxidative stress produced significant cell death that was reduced by previous treatment with the tested ginsenosides. Ginsenosides Rb(1), Rb(2), Re and Rg(1) were effective in reducing astrocytic death, while Rb(1), Rb(2), Rd, Re and Rg(1) decreased ROS formation, ginsenoside Re being the most active. Ginsenosides from P. ginseng induce neuroprotection mainly through activation of antioxidant enzymes.  相似文献   

18.
Microbacterium esteraromaticum was isolated from ginseng field. The β-glucosidase gene (bgp1) from M. esteraromaticum was cloned and expressed in Escherichia coli BL21 (DE3). The bgp1 gene consists of 2,496 bp encoding 831 amino acids which have homology to the glycosyl hydrolase family 3 protein domain. The recombinant β-glucosidase enzyme (Bgp1) was purified and characterized. The molecular mass of purified Bgp1 was 87.5 kDa, as determined by SDS-PAGE. Using 0.1 mg ml−1 enzyme in 20 mM sodium phosphate buffer at 37°C and pH 7.0, 1.0 mg ml−1 ginsenoside Rb1 was transformed into 0.444 mg ml−1 ginsenoside Rg3 within 6 h. The Bgp1 sequentially hydrolyzed the outer and inner glucose attached to the C-20 position of ginsenosides Rb1. Bgp1 hydrolyzed the ginsenoside Rb1 along the following pathway: Rb1 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 using the recombinant β-glucosidase.  相似文献   

19.
Ginsenosides are the major constituent that is responsible for the health effects of American ginseng. The ginsenoside profile of wild American ginseng is ultimately the result of germplasm, climate, geography, vegetation species, water, and soil conditions. This is the first report to address the ginsenoside profile of wild American ginseng grown in Tennessee (TN), the third leading state for production of wild American ginseng. In the present study, ten major ginsenosides in wild American ginseng roots grown in TN, including Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, and Rg3, were determined simultaneously. The chemotypic differences among TN wild ginseng, cultivated American ginseng, and Asian ginseng were assessed based on the widely used markers of ginsenoside profiling, including the top three ginsenosides, ratios of PPD/PPT, Rg1/Rb1, Rg1/Re, and Rb2/Rc. Our findings showed marked variation in ginsenoside profile for TN wild ginseng populations. Nevertheless, TN wild ginseng has significant higher ginsenoside content and more ginsenoside diversity than the cultivated ginseng. The total ginsenoside content in TN wild ginseng, as well as ginsenosides Rg1 and Re, increases with the age of the roots. Marked chemotypic differences between TN wild ginseng and cultivated American ginseng were observed based on the chemotypic markers. Surprisingly, we found that TN wild ginseng is close to Asian ginseng with regard to these characteristics in chemical composition. This study verified an accessible method to scientifically elucidate the difference in chemical constituents to distinguish wild from the cultivated American ginseng. This work is critical for the ecological and biological assessments of wild American ginseng so as to facilitate long‐term sustainability of the wild population.  相似文献   

20.
The aim of the present study was to verify the important role of Maillard reaction in the protective effect of heat-processed ginsenoside Re-serine mixture against oxidative stress-induced nephrotoxicity. The free radical-scavenging activity of ginsenoside Re-serine mixture was increased by heat-processing. Ginsenoside Re was transformed into less-polar ginsenosides such as Rg(2), Rg(6) and F(4) by heat-processing, and the glucose molecule at carbon-20 was separated. The improved-free radical-scavenging activity by heat-processing was mediated by the generation of antioxidant Maillard reaction products (MRPs) from the reaction of glucose with serine. Moreover, MRPs from ginsenoside Re-serine mixture showed protective effect against cisplatin-induced renal epithelial cell damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号