首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Opiate binding sites in five brain regions were labeled with the μ and δ markers, 3H-morphine and 3H-[D-Ala2,D-leu5]enkephalin, respectively. The highest densities of both 3H-morphine and 3H-DADLE labeled sites are found in striatum and frontal cortex. Hypothalamus and midbrain contain predominantly 3H-morphine labeled sites. The selectivity of the opioid peptides [D-Ala2,D-leu5]enkephalin, β-endorphin and dynorphin(1–13) for the two opiate sites was investigated by comparing the potency of these unlabeled compounds against the μ and δ markers in different brain regions. This determination has the effect of controlling for the breakdown of peptides within each region. While the enkephalin analogue shows a preference for the δ binding site and β-endorphin is more nearly equipotent towards the two binding sites, dynorphin(1–13) shows a high affinity and selective preference for the μ binding site over the δ site. The potency of the opioid peptides in displacing the μ and δ markers varies from region to region according to the relative densities of the two opiate binding site populations.  相似文献   

2.
John W. Holaday 《Peptides》1982,3(6):1023-1029
The cardiorespiratory effects of prototype μ (morphine and β-casomorphine 1–4) and δ (D-Ala2-D-Leu5Enkephalin—DADLE) opioid ligands were compared following microinjection into third and fourth ventricular spaces in conscious and anesthetized rats. The direction of change in arterial pressure produced by ventricular opioid injections varied according to ligand, site of administration, and state of consciousness of the animal. In general, pentobarbital anesthesia blocked or reversed the pressor response to these opiate agonists; depressor responses became magnified following pentobarbital. Qualitatively, the predominant effect of third ventricular DADLE in anesthetized rats was to produce a depression of arterial pressure and pulse pressure, suggesting an involvement of hypothalamic δ opioid receptors in decreasing sympathetic outflow. By contrast, morphine exerted pronounced bradycardic effects following fourth ventricular administration, suggesting an action at μ opioid receptors which influence vagal parasympathetic activity. Both ligands lowered respiratory rates upon fourth ventricular injection, indicating a possible involvement of either opioid receptor subtype in the depression of brainstem respiratory centers. These depressant effects of opioids upon cardiorespiratory function were readily reversed by naloxone. The qualitative similarity between the cardiovascular effects of third ventricular DADLE administration and various forms of circulatory shock may indicate that both phenomena involve delta opioid receptors at hypothalamic sites.  相似文献   

3.
The affinity of beta-carbolines, which may be formed in the body, to benzodiazepine and opiate receptors was studied by measuring their ability to inhibit the binding of [3H]-flunitrazepam and [3H]-dihydromorphine on rat brain synaptosomal membranes. All "aromatized" beta-carbolines studied (norharmane, harmane and 6-methoxyharmane) inhibited the specific binding of [3H]-flunitrazepam in micromolar concentrations, dihydro-beta-carbolines (6-methoxyharmalan, harmalol) were less potent, while all tetrahydro-beta-carbolines showed very low affinity. 6-Hydroxytetrahydroharmane, which is formed by condensation 5HT with acetaldehyde, inhibited [3H]-dihydromorphine binding in micromolar concentration, while norharmane and tetrahydro-beta-carbolines without OH-group showed little affinity. beta-Carbolines are the most potent known natural benzodiazepine receptor ligands. Because they are formed after alcohol drinking, their effects on benzodiazepine and opiate receptors may be connected with alcohol dependence although some beta-carbolines may inhibit 5HT uptake in still lower concentrations.  相似文献   

4.
D T Wong  J S Horng 《Life sciences》1973,13(11):1543-1556
Membranes from homogenates of corpus striatum bound 3H-dihydromorphine in a saturable fashion with a Km value of 1 × 10?9M. The binding of 3H-dihydromorphine to the membranes was reduced to about 10% by 10?7M levorphanol but not by 10?7M dextrorphan. The binding of 3H-dihydromorphine became less sensitive to 10?7M levorphanol when the concentration of 3H-dihydromorphine was greater than 2 × 10?9M. Other opiate narcotics, e.g. morphine and l-methadone, were as effective as levorphanol in competition for the binding 3H-dihydromorphine with ED50 values of 2–4 × 10?9M. d-Methadone and dextrorphan were about 1/50 and 1/2000 as effective as their respective levo-isomers. The opiate antagonist, naloxone, also competed effectively for the binding sites with an ED50 value of 3.3 × 10?9M. Substances like acetylcholine, choline, serotonin, norepinephrine and dopamine were ineffective. Only ionophores specific for divalent cations stimulated the binding of 3H-dihydromorphine suggesting that some endogenous divalent cations may be inhibitory to the binding of the opiate narcotic. The receptors of 3H-dihydromorphine probably exist in the membranes of nerve endings and have a density of 6 × 1012 sites per g in corpus striatum. We conclude that the described technique can successfully detect the opiate narcotic receptors in the central nervous system without the usual method of displacement.  相似文献   

5.
Testosterone does not influence opiate binding sites in the male rat brain   总被引:3,自引:0,他引:3  
T J Cicero  K S Newman  E R Meyer 《Life sciences》1983,33(13):1231-1239
It has been reported previously that castration produces testosterone-reversible increases in the density of 3H-naltrexone binding sites in the male rat brain. Unfortunately, we were unable to replicate these observations in a comprehensive series of studies. Specifically, we found that castration failed to produce changes in the Kd or Bmax of opiate binding sites in whole male rat brain, or in the hypothalamus, utilizing 3H-dihydromorphine (a mu receptor ligand), 3H-D-alanine, D-leucine enkephalin (delta) or 3H-naltrexone (ubiquitous). Furthermore, we found that the relative proportion of mu and delta binding sites in brain was unchanged by castration. The reasons for the discrepancy between the present results and those previously reported are unclear, but it appears that the provocative hypothesis that testosterone influences opioid receptors in brain must be carefully reevaluated.  相似文献   

6.
The regional developmental appearance of mu binding sites in rat brain was examined by quantitative autoradiography of 3H-dihydromorphine binding in rats 2, 14, 21, and 28 days old. Labeling with 3H-dihydromorphine was heterogeneous in adult rat brains, as previously reported by other laboratories. Levels of 3H-dihydromorphine binding ranged from approximately 250 nCi/g tissue in the interpeduncular nucleus and 100 nCi/g tissue in the habenula to 40 nCi/g tissue in the hypothalamus and periaqueductal gray. Some areas, particularly white matter regions, had no detectable specific binding. The density of 3H-dihydromorphine binding increased in all regions between 2 and 28 days of age. The increases in 3H-dihydromorphine binding in various regions of rat brain developed at different rates. Maximal densities were seen by 14 days of age in most regions examined, including the caudate, hippocampus, amygdala, and hypothalamus. Binding in the medial thalamus and quadrigeminal plate, however, did not reach maximal levels until 21 days. Although quantitative autoradiography offers major advantages in the examination of the regional distribution of opiate binding sites, variability both between sections from the same brain and between sections from different brains demonstrate some of the difficulties associated with this type of experimental approach.  相似文献   

7.
A Pfeiffer  A Herz 《Life sciences》1982,31(12-13):1355-1358
The present studies were undertaken to evaluate whether different types of opiate agonists interact in a distinguishable manner with mu, delta and kappa opiate binding sites. Two approaches were employed: (a) the well known effects of metal ions on opiate agonist binding affinities of subsite selective ligands were studied at mu, delta and kappa sites in rat brain homogenates. Binding parameters were obtained by simultaneous computeranalysis of displacement curves using the prototypic ligands dihydromorphine (DHM), (D-Ala2, D-Leu5) enkephalin (DADL) and ethylketocyclazocine (EKC) of the mu, delta and kappa binding sites respectively. The results show that the effects of metal ions depend not only on the binding site, but also on the ligand under investigation. (b) The interaction of the delta agonist DADL with the mu agonist DHM was investigated at mu binding sites by characterizing the type of competition occurring between the two ligands. The interaction was of the noncompetitive type. It therefore appears that the various opiate agonists either interact preferentially with different parts of a larger receptor site area or bind to topographically distinct sites on a single receptor molecule which are coupled allosterically.  相似文献   

8.
Multiple opiate binding sites in rat spinal cord   总被引:1,自引:0,他引:1  
J R Traynor  P D Kelly  M J Rance 《Life sciences》1982,31(12-13):1377-1380
  相似文献   

9.
The preferential interactions of alpha-interferon (alpha-IFN) with delta and mu opiate receptors were studied. alpha-IFN (specific antiviral activity 2 X 10(3) U/mg protein) was shown to inhibit in the competitive manner 3H-naloxone and 3H-D-ala2, D-leu5-enkephalin (3H-DADL) specific binding to opiate receptor subpopulations. alpha-IFN was much more effective in decreasing 3H-DADL than 3H-naloxone binding in opiate receptors: K1 values averaged 160 +/- 30 and 1150 +/- 80 U/ml, respectively. IFN effective concentrations inhibiting 50% of 3H-naloxone opiate receptor binding in the absence or presence of 100 mmol/l NaCl were similar, and the "sodium shift" value was equal to 1. The independence of alpha-IFN activity of the presence of NA+ cations suggests the antagonist character of alpha-IFN interaction with opiate receptors. Thus, alpha-IFN employed appears to be an alpha-selective ligand displaying the in vitro properties of "pure" morphine antagonists.  相似文献   

10.
X J Wang  S G Fan  M F Ren  J S Han 《Life sciences》1989,45(2):117-123
Radio receptor assay (RRA) was adopted to analyse the influence of CCK-8 on 3H-etorphine binding to opiate receptors in rat brain synaptosomal membranes (P2). In the competition experiment CCK-8 (1pM to 1 microM) suppressed the binding of 3H-etorphine. This effect was completely reversed by proglumide at 1 microM. Rosenthal analysis for saturation revealed two populations of 3H-etorphine binding sites. CCK-8 (1pM to 1 microM) inhibited 3H-etorphine binding to the high affinity sites by an increase in Kd (up to +235%) and decrease in Bmax (up to -80%) without significant changes in the Kd and Bmax of the low affinity sites. This effect of CCK-8 (10nM) was also completely reversed by proglumide at 1 microM. Unsulfated CCK-8 (100pM to 1 microM) produced only a slight increase in Kd of the high affinity sites (+64%) without affecting Bmax. The results suggest that CCK-8 might be capable of suppressing the high affinity opioid binding sites via the activation of CCK receptor.  相似文献   

11.
The allowed conformations of the μ-receptor-selective cyclic opioid peptide analog were determined using a grid search through the entire conformational space. Energy minimization of the 13-membered ring structure lacking the exocyclic Tyr1 residue and the Phe3 side chain using the molecular mechanics program Maximin resulted in only four low-energy conformations. These four ring structures served as templates for a further energy minimization study with the Tyr1 residue and Phe3 side chain added to the molecule. The results indicated that the Tyr1 and Phe3 side chains enjoy considerable orientational freedom, but nevertheless, only a limited number of low-energy side-chain configurations were found. The obtained low-energy conformers are discussed in relation to various proposed models of the bioactive conformation of enkephalins and morphiceptin.  相似文献   

12.
The distribution of 3H-nomifensine binding sites in the rat brain has been studied by quantitative autoradiography. The binding of 3H-nomifensine to caudate putamen sections was saturable, specific, of a high affinity (Kd = 56 nM) and sodium-dependent. The dopamine uptake inhibitors benztropine, nomifensine, cocaine, bupropion and amfonelic acid were the most potent competitors of 3H-nomifensine binding to striatal sections. The highest levels of (benztropine-displaceable) 3H-nomifensine binding sites were found in the caudate-putamen, the olfactory tubercle and the nucleus accumbens. 6-Hydroxydopamine-induced lesion of the ascending dopaminergic bundle resulted in a marked decrease in the 3H-ligand binding in these areas. Moderately high concentrations of the 3H-ligand were observed in the bed nucleus of the stria terminalis, the anteroventral thalamic nucleus, the cingulate cortex, the lateral septum, the hippocampus, the amygdala, the zona incerta and some hypothalamic nuclei. There were low levels of the binding sites in the habenula, the dorsolateral geniculate body, the substantia nigra, the ventral tegmental area and the periaqueductal gray matter. These autoradiographic data are consistent with the hypothesis that 3H-nomifensine binds primarily to the presynaptic uptake site for dopamine but also labels the norepinephrine uptake site.  相似文献   

13.
This note reports the interaction of three currently used tricyclic antidepressant drugs (clomipramine, imipramine and amitriptyline) with delta, mu and kappa opioid binding sites in the bovine adrenal medulla. Clomipramine was the only drug interacting with delta and mu sites. On the contrary, all three drugs showed a significant interactions with subtypes of the kappa binding site. Clomipramine was the most active on the kappa 2 and kappa 3 subtypes while amitriptyline showed the highest interaction with the kappa 1 subtype. On the contrary the tricyclic cyproheptadine did not present any interaction with opioid binding sites in our system. This interaction between tricyclic antidepressants and opioid binding sites might be the origin of their analgesic action.  相似文献   

14.
Characteristics of 3H-substance P binding sites in rat brain membranes   总被引:1,自引:0,他引:1  
Binding characteristics of 3H-Substance P (SP) were studied with rat brain membranes using a method applied to peripheral tissues by Lee and Snyder [15]. This method was well applicable to central nervous system (CNS) tissues. The results in the present study indicate that specific 3H-SP binding reaches a plateau only after 20 minutes of incubation, and the binding sites are saturable at a relatively low concentration of 3H-SP. Scatchard analysis of specific binding data reveals a single class of binding sites with a high affinity (Kd = 0.30 nM) and a low density (Bmax = 27.7 fmol/mg protein) in rat brain membranes. A Hill plot of the displacement curve of 3H-SP with unlabelled SP showed no indication for cooperativity (nH = 0.83). The relative potencies of binding of various SP fragments at 3H-SP binding sites were fairly parallel to the length of the C-terminal fragments. Neurotransmitters not structurally related to SP produced no effect on 3H-SP binding even when used at micromolar concentrations.  相似文献   

15.
Active opiate binding sites have been solubilized from mammalian brain cell membranes. The presence of 0.5-0.1 M NaCl during treatment of membranes from rat brain, human frontal cortex, and bovine corpus striatum with glycodeoxycholate or digitonin resulted in the extraction of active opiate binding sites in yields ranging up to 43%. The criteria for solubility of the sites were their inability to sediment at 10(5) x g after 2 hr and their apparent molecular weight of 3- 4 x 10(5) as determined by gel filtration. The receptors in solution resemble the membrane-bound sites with respect to saturability, stereo-specificity, sensitivity to heat and reagents, and high affinity for opioid ligands. The interaction of solubilized sites with immobilized lectins was used to demonstrate the glycoprotein nature of the opiate receptor. Soluble receptors from all species studied were retained by wheat germ agglutinin(WGA)-agarose and could be specifically eluted with N-acetylglucosamine. No retention of solubilized material was observed with eight other lectins examined, including horseshoe crab lectin, a sialic acid specific agglutinin. The receptor protein eluted from WGA columns was enriched 25-50-fold over the crude soluble fraction.  相似文献   

16.
The binding characteristics of mu, delta, and kappa opiate sites were studied in rat brain and spinal cord membrane homogenates. Scatchard analysis of 3H-Dihydromorphine, 3H-D-Ala2-D-Leu5-Enkephalin (in the presence of morphiceptin), and 3H-Ethylketocyclazocine (in the presence of morphiceptin and D-Ala2-D-Leu5-Enkephalin) binding sites revealed similar high affinities of these ligands for their respective sites in brain and spinal cord. The majority of binding in brain and spinal cord was attributed to mu and delta sites, with only about 10% of the combined total binding capacity being kappa.  相似文献   

17.
18.
With a view to finding potential GABA-mimetics, the effects of a number of structural analogues of GABA were studied on three parameters associated with GABA neural transmission of rat brain. These were (1) the binding of [3H]GABA to its receptor, (2) the binding of [3H]GABA to its transporter (sodium-dependent binding), and (3) the activity of GABA aminotransferase. Thirteen of the 21 compounds tested competitively inhibited both the low and the high affinity GABA receptor binding components. The most potent inhibitors were morpholinopropane sulphonic acid (MOPS) and aminoethylthiosulphonic acid (AETS). All of the compounds were markedly less effective in inhibiting the high affinity GABA receptor binding system than the low affinity system. The effect of each of the inhibitors was measured on [3H]diazepam receptor binding. Only 6-(morpholinomethyl)kojic acid, kojic amine, 1-piperidinepropane sulphonic acid and 4(4′-azido-benzoimidylamino)butanoic acid (ABBA) were able to induce a stimulation of binding. Four of the inhibitors of [3H]GABA binding were able to appreciably reduce GABA-induced enhancement of diazepam binding. These were N-(2-nitro,4-azidophenyl)aminopropane sulphonic acid, 8-amino-1-napthalene sulphonic acid, narcotine-N-oxide and 5-phenyl-2-pyrrolepropionic acid. These results demonstrate that MOPS and AETS are good inhibitors of GABA receptor binding although there is no other evidence that they might be agonists since they have no effect on diazepam receptor binding. Based on their ability to block GABA-induced stimulation of diazepam binding ABBA, 8-amino-1-naphthalene sulphonic acid and 5-phenyl-2-pyrrolepropionic acid may possess antagonistic properties. ABBA was the only compound to inhibit sodium-dependent [3H]GABA binding. None of the compounds had an effect on the activity of GABA aminotransferase. From this study at least two analogues, MOPS and AETS, have emerged that hold potential as GABA-mimetics. Also, the three GABA recognition sites of rat brain have been shown to possess marked pharmacological differences.  相似文献   

19.
Specific binding sites for vasopressin (AVP) were located in subcellular particulate fractions of rat brain with tritiated vasopressin of high specific activity, 22.5 Ci/mmol. Rat brain tissue was dissected, placed in cold 0.32 M sucrose containing proteolytic inhibitors, homogenized and fractionated into a crude nuclear fraction (1K pellet), crude mitochondrial fractions (12K pellet), and plasma membranes and microsomes (100K pellet). Specific binding of vasopressin was found in the 12K and 100K pellets in the presence of a divalent metal ion with Ni greater than Co greater than Mg greater than Mn greater than no metal ion at pH 7.4 in 50 mM Tris-Maleate buffer. Maximum specific binding of 16 nM AVP was located in the 100K anterior cortex fraction which bound 350 fmoles/mg protein; striatum, midbrain/thalamus, cerebellum, and medulla oblongata and pons bound specifically about 200 fmoles/mg protein and frontal poles and parietal cortex about 100 fmoles/mg protein in the 100K pellet. In all of the brain regions studied, except hippocampus and septum, the 100K pellet bound specifically 2 to 4 times more 3H-AVP than the 12K pellet. In the hippocampus with 16 nM AVP, the 12K pellet bound specifically 150 fmoles/mg protein; the septum, 75 fmoles/mg protein. Little or no binding to the 100K pellet was present in these regions. Bound AVP could be dissociated rapidly from the membranes by the addition of EDTA. The 12K hippocampal pellet was further fractionated into myelin, mitochondria, and synaptosomes; purification was confirmed by marker enzyme assays.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号