首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The threshold of the cockroach tactile neuron increases strongly with depolarization by a process involving at least two time constants. This effect is probably responsible for the rapid and complete adaptation of the neuron's response to step inputs. A technique for intracellular recording and stimulation of the neuron has recently been established and this allows direct observation of the dynamic response of the neuronal encoder. A white noise stimulus was used to modulate the membrane potential of the neuron. The first-order frequency response function between membrane potential and action potential discharge could be explained by a variable threshold model with two time constants. Second-order frequency response functions could be accounted for by a Wiener cascade model. The dynamic nonlinear behavior of the encoder can therefore be explained by a unidirectional threshold which increases linearly and dynamically with membrane potential.  相似文献   

2.
Action potential encoding in the cockroach tactile spine neuron can be represented as a single-input single-output nonlinear dynamic process. We have used a new functional expansion method to characterize the nonlinear behavior of the neural encoder. This method, which yields similar kernels to the Wiener method, is more accurate than the latter and is efficient enough to obtain reasonable kernels in less than 15 min using a personal computer. The input stimulus was band-limited white Gaussian noise and the output consisted of the resulting train of action potentials, which were unitized to give binary values. The kernels and the system input-output signals were used to identify a model for encoding comprising a cascade of dynamic linear, static nonlinear, and dynamic linear components. The two dynamic linear components had repeatable and distinctive forms with the first being low-pass and the second being high-pass. The static nonlinearity was fitted with a fifth-order polynomial function over several input amplitude ranges and had the form of a half-wave rectifier. The complete model gave a good approximation to the output of the neuron when both were subjected to the same novel white noise input signal.  相似文献   

3.
In recent years, accumulating evidence indicates that thalamic bursts are present during wakefulness and participate in information transmission as an effective relay mode with distinctive properties from the tonic activity. Thalamic bursts originate from activation of the low threshold calcium cannels via a local feedback inhibition, exerted by the thalamic reticular neurons upon the relay neurons. This article, examines if this simple mechanism is sufficient to explain the distinctive properties of thalamic bursting as an effective relay mode. A minimal model of thalamic circuit composed of a retinal spike train, a relay neuron and a reticular neuron is simulated to generate the tonic and burst firing modes. The integrate-and-fire-or-burst model is used to simulate the neurons. After discriminating the burst events with criteria based on inter-spike-intervals, statistical indices show that the bursts of the minimal model are stereotypic events. The relation between the rate of bursts and the parameters of the input spike train demonstrates marked nonlinearities. Burst response is shown to be selective to spike-silence-spike sequences in the input spike train. Moreover, burst events represent the input more reliably than the tonic spike in a considerable range of the parameters of the model. In conclusion, many of the distinctive properties of thalamic bursts such as stereotypy, nonlinear dependence on the sensory stimulus, feature selectivity and reliability are reproducible in the minimal model. Furthermore, the minimal model predicts that while the bursts are more frequent in the spike train of the off-center X relay neurons (corresponding to off-center X retinal ganglion cells), they are more reliable when generated by the on-center ones (corresponding to on-center X ganglion cells).  相似文献   

4.
The response behaviors in many two-alternative choice tasks are well described by so-called sequential sampling models. In these models, the evidence for each one of the two alternatives accumulates over time until it reaches a threshold, at which point a response is made. At the neurophysiological level, single neuron data recorded while monkeys are engaged in two-alternative choice tasks are well described by winner-take-all network models in which the two choices are represented in the firing rates of separate populations of neurons. Here, we show that such nonlinear network models can generally be reduced to a one-dimensional nonlinear diffusion equation, which bears functional resemblance to standard sequential sampling models of behavior. This reduction gives the functional dependence of performance and reaction-times on external inputs in the original system, irrespective of the system details. What is more, the nonlinear diffusion equation can provide excellent fits to behavioral data from two-choice decision making tasks by varying these external inputs. This suggests that changes in behavior under various experimental conditions, e.g. changes in stimulus coherence or response deadline, are driven by internal modulation of afferent inputs to putative decision making circuits in the brain. For certain model systems one can analytically derive the nonlinear diffusion equation, thereby mapping the original system parameters onto the diffusion equation coefficients. Here, we illustrate this with three model systems including coupled rate equations and a network of spiking neurons.  相似文献   

5.
6.
A spatially-distributed mathematical model for the inflammatory response to bacterial invasion of tissue is proposed which includes leukocyte motility and chemotaxis behavior and chemical mediator properties explicitly. This system involves three coupled nonlinear partial differential equations and so is not amenable to analysis. Using scaling arguments and singular perturbation techniques, an approximating system of two coupled nonlinear ordinary differential equations is developed. This system now permits analysis by phase plane methods. Using the approximating model, the dependence of the dynamic behavior of the inflammatory response upon key process parameters, including leukocyte chemotaxis, is studied.This work has been supported by the Deutsche Forschungsgemeinschaft  相似文献   

7.
Neuronal impedance characterizes the magnitude and timing of the subthreshold response of a neuron to oscillatory input at a given frequency. It is known to be influenced by both the morphology of the neuron and the presence of voltage-gated conductances in the cell membrane. Most existing theoretical accounts of neuronal impedance considered the effects of voltage-gated conductances but neglected the spatial extent of the cell, while others examined spatially extended dendrites with a passive or spatially uniform quasi-active membrane. We derived an explicit mathematical expression for the somatic input impedance of a model neuron consisting of a somatic compartment coupled to an infinite dendritic cable which contained voltage-gated conductances, in the more general case of non-uniform dendritic membrane potential. The validity and generality of this model was verified through computer simulations of various model neurons. The analytical model was then applied to the analysis of experimental data from real CA1 pyramidal neurons. The model confirmed that the biophysical properties and predominantly dendritic localization of the hyperpolarization-activated cation current I (h) were important determinants of the impedance profile, but also predicted a significant contribution from a depolarization-activated fast inward current. Our calculations also implicated the interaction of I (h) with amplifying currents as the main factor governing the shape of the impedance-frequency profile in two types of hippocampal interneuron. Our results provide not only a theoretical advance in our understanding of the frequency-dependent behavior of nerve cells, but also a practical tool for the identification of candidate mechanisms that determine neuronal response properties.  相似文献   

8.
We extend a quantitative model for low-voltage, slow-wave excitability based on the T-type calcium current (Wang et al. 1991) by juxtaposing it with a Hodgkin-Huxley-like model for fast sodium spiking in the high voltage regime to account for the distinct firing modes of thalamic neurons. We employ bifurcation analysis to illustrate the stimulus-response behavior of the full model under both voltage regimes. The model neuron shows continuous sodium spiking when depolarized sufficiently from rest. Depending on the parameters of calcium current inactivation, there are two types of low-voltage responses to a hyperpolarizing current step: a single rebound low threshold spike (LTS) upon release of the step and periodic LTSs. Bursting is seen as sodium spikes ride the LTS crest. In both cases, we analyze the LTS burst response by projecting its trajectory into a fast/slow phase plane. We also use phase plane methods to show that a potassium A-current shifts the threshold for sodium spikes, reducing the number of fast sodium spikes in an LTS burst. It can also annihilate periodic bursting. We extend the previous work of Rose and Hindmarsh (1989a–c) for a thalamic neuron and propose a simpler model for thalamic activity. We consider burst modulation by using a neuromodulator-dependent potassium leakage conductance as a control parameter. These results correspond with experiments showing that the application of certain neurotransmitters can switch firing modes. Received: 18 July 1993/Accepted in revised form: 22 January 1994  相似文献   

9.
We present initial results regarding the existence, stability and interactionof linear and nonlinear vibrational modes in a system of two coupled, onedimensional lattices with unequal numbers of masses. The effects on thesenonlinear modes of coupling a near continuum system to a discrete systemusing a nonlinear coupling are examined. This numerical model is a firststep towards investigating the dynamical behavior of a flexible sheetcoupled nonlinearly to a semi-rigid support, a system which couldconceivably represent a biological cell membrane with a supporting proteinnetwork. General implications for the dynamical behavior of continuumsystems coupled nonlinearly to discrete systems are introduced.  相似文献   

10.
Marc Joyeux 《Biophysical journal》2018,114(10):2317-2325
This work investigates the interactions of H-NS proteins and bacterial genomic DNA through computer simulations performed with a coarse-grained model. The model was developed specifically to study the switch of H-NS proteins from the DNA-stiffening to the DNA-bridging mode, which has been observed repeatedly upon addition of multivalent cations to the buffer but is still not understood. Unraveling the corresponding mechanism is all the more crucial, as the regulation properties of H-NS proteins, as well as other nucleoid proteins, are linked to their DNA-binding properties. The simulations reported here support a mechanism, according to which the primary role of multivalent cations consists in decreasing the strength of H-NS/DNA interactions compared to H-NS/H-NS interactions, with the latter ones becoming energetically favored with respect to the former ones above a certain threshold of the effective valency of the cations of the buffer. Below the threshold, H-NS dimers form filaments, which stretch along the DNA molecule but are quite inefficient in bridging genomically distant DNA sites (DNA-stiffening mode). In contrast, just above the threshold, H-NS dimers form three-dimensional clusters, which are able to connect DNA sites that are distant from the genomic point of view (DNA-bridging mode). The model provides clear rationales for the experimental observations that the switch between the two modes is a threshold effect and that the ability of H-NS dimers to form higher order oligomers is crucial for their bridging capabilities.  相似文献   

11.
12.
A well established method to analyze dynamical systems described by coupled nonlinear differential equations is to determine their normal modes and reduce the dynamics, by adiabatic elimination of stable modes, to a much smaller system for the amplitudes of unstable modes and their nonlinear interactions. So far, this analysis is possible only for idealized symmetric model systems. We aim to build a framework in which realistic systems with less symmetry can be analyzed automatically. In this paper we present a first example of mode analysis with the assistance of numerical computation. Our method is illustrated using a model system for the ontogenesis of retinotopy, and the results reproduce those from theoretical analysis precisely. Aspects of organization generalized from this model system are discussed. This research was supported by EU projects Daisy and SECO, and the Hertie Foundation.  相似文献   

13.
This paper presents a nonlinear principal component analysis (PCA) that identifies underlying sources causing the expression of spatial modes or patterns of activity in neuroimaging time-series. The critical aspect of this technique is that, in relation to conventional PCA, the sources can interact to produce (second-order) spatial modes that represent the modulation of one (first-order) spatial mode by another. This nonlinear PCA uses a simple neural network architecture that embodies a specific form for the nonlinear mixing of sources that cause observed data. This form is motivated by a second-order approximation to any general nonlinear mixing and emphasizes interactions among pairs of sources. By introducing these nonlinearities principal components obtain with a unique rotation and scaling that does not depend on the biologically implausible constraints adopted by conventional PCA. The technique is illustrated by application to functional (positron emission tomography and functional magnetic resonance imaging) imaging data where the ensuing first- and second-order modes can be interpreted in terms of distributed brain systems. The interactions among sources render the expression of any one mode context-sensitive, where that context is established by the expression of other modes. The examples considered include interactions between cognitive states and time (i.e. adaptation or plasticity in PET data) and among functionally specialized brain systems (using a fMRI study of colour and motion processing).  相似文献   

14.
This paper proposes an extension to the model of a spiking neuron for information processing in artificial neural networks, developing a new approach for the dynamic threshold of the integrate-and-fire neuron. This new approach invokes characteristics of biological neurons such as the behavior of chemical synapses and the receptor field. We demonstrate how such a digital model of spiking neurons can solve complex nonlinear classification with a single neuron, performing experiments for the classical XOR problem. Compared with rate-coded networks and the classical integrate-and-fire model, the trained network demonstrated faster information processing, requiring fewer neurons and shorter learning periods. The extended model validates all the logic functions of biological neurons when such functions are necessary for the proper flow of binary codes through a neural network.  相似文献   

15.
The modal analysis of a human tibia consisted of characterizing its dynamic behavior by determining natural frequency, damping ratio and mode shapes. Two methods were used to perform the modal analysis: (1) a finite element method (structural model); (2) an experimental modal analysis (modal model). The experimental modal model was used to optimize the structural model. After optimization, differences in results between the two models were found to be due only to mechanical properties and mass distribution. The influences of boundary conditions and geometric properties (such as inertia and length) were eliminated by the finite element model itself. The percent relative error between the two methods was approximately 3%, corresponding to the standard deviation of the measured frequencies. For the frequency range considered, the mode shapes were bending modes in two different vibration planes (latero-medial and sagittal), with a slight torsion effect due to the twisted geometry of the tibia.  相似文献   

16.
Thermal performance curves are an example of continuous reaction norm curves of common shape. Three modes of variation in these curves--vertical shift, horizontal shift, and generalist-specialist trade-offs--are of special interest to evolutionary biologists. Since two of these modes are nonlinear, traditional methods such as principal components analysis fail to decompose the variation into biological modes and to quantify the variation associated with each mode. Here we present the results of a new method, template mode of variation (TMV), that decomposes the variation into predetermined modes of variation for a particular set of thermal performance curves. We illustrate the method using data on thermal sensitivity of growth rate in Pieris rapae caterpillars. The TMV model explains 67% of the variation in thermal performance curves among families; generalist-specialist trade-offs account for 38% of the total between-family variation. The TMV method implemented here is applicable to both differences in mean and patterns of variation, and it can be used with either phenotypic or quantitative genetic data for thermal performance curves or other continuous reaction norms that have a template shape with a single maximum. The TMV approach may also apply to growth trajectories, age-specific life-history traits, and other function-valued traits.  相似文献   

17.
In controlling animal behavior the nervous system has to perform within the operational limits set by the requirements of each specific behavior. The implications for the corresponding range of suitable network, single neuron, and ion channel properties have remained elusive. In this article we approach the question of how well-constrained properties of neuronal systems may be on the neuronal level. We used large data sets of the activity of isolated invertebrate identified cells and built an accurate conductance-based model for this cell type using customized automated parameter estimation techniques. By direct inspection of the data we found that the variability of the neurons is larger when they are isolated from the circuit than when in the intact system. Furthermore, the responses of the neurons to perturbations appear to be more consistent than their autonomous behavior under stationary conditions. In the developed model, the constraints on different parameters that enforce appropriate model dynamics vary widely from some very tightly controlled parameters to others that are almost arbitrary. The model also allows predictions for the effect of blocking selected ionic currents and to prove that the origin of irregular dynamics in the neuron model is proper chaoticity and that this chaoticity is typical in an appropriate sense. Our results indicate that data driven models are useful tools for the in-depth analysis of neuronal dynamics. The better consistency of responses to perturbations, in the real neurons as well as in the model, suggests a paradigm shift away from measuring autonomous dynamics alone towards protocols of controlled perturbations. Our predictions for the impact of channel blockers on the neuronal dynamics and the proof of chaoticity underscore the wide scope of our approach.  相似文献   

18.
We have performed a systematic clonal analysis to describe the modes of growth, dispersion and production of cells during the development of the mouse neural system. We have used mice expressing a LaacZ reporter gene under the control of the neuron specific enolase promoter to randomly generate LacZ clones in the central nervous system (CNS). We present evidence for (1) a pool of CNS founder cells that is not regionalized, i.e. give descendants dispersed along the entire A-P axis, (2) an early separation between pools of precursors for the anterior and posterior CNS and (3) distinct modes of production of progenitors in these two domains. More specifically, cell growth and dispersion of the progenitors follow a relatively coherent pattern throughout the anterior CNS, a mode that leads to a progressive regionalization of cell fates. In contrast, cell growth of progenitors of the SC appears to involve self-renewing stem cells that progress caudally during regression of the mode. Therefore, at least part of the area surrounding the node is composed of precursors with self-renewing properties and the development of the trunk is dependent on pools of stem cells regressing from A to P. Taken together with our analysis of the cell growth changes associated with neuromere formation (Mathis, L., Sieur, J., Voiculescu, O., Charnay, P. and Nicolas, J. F. (1999) Development 126, 4095-4106), our results suggest that major transitions in CNS development correspond to changes in cell behavior and may provide a link between morphogenesis and genetic patterning mechanisms (i.e. formation of the body plan).  相似文献   

19.
A comparison of a normal mode analysis and principal component analysis of a 200-ps molecular dynamics trajectory of bovine pancreatic trypsin inhibitor in vacuum has been made in order to further elucidate the harmonic and anharmonic aspects in the dynamics of proteins. An anharmonicity factor is defined which measures the degree of anharmonicity in the modes, be they principal modes or normal modes, and it is shown that the principal mode system naturally divides into anharmonic modes with peak frequencies below 80 cm?1, and harmonic modes with frequencies above this value. In general the larger the mean-square fluctuation of a principal mode, the greater the degree of anharmonicity in its motion. The anharmonic modes represent only 12% of the total number of variables, but account for 98% of the total mean-square fluctuation. The transitional nature of the anharmonic motion is demonstrated. The results strongly suggest that in a large subspace, the free energy surface, as probed by the simulation, is approximated by a multi-dimensional parabola which is just a resealed version of the parabola corresponding to the harmonic approximation to the conformational energy surface at a single minimum. After 200 ps, the resealing factor, termed the “normal mode resealing factor,” has apparently converged to a value whereby the mean-square fluctuation within the subspace is about twice that predicted by the normal mode analysis. © 1995 Wiley-Liss, Inc.  相似文献   

20.
1. The femoral tactile spine of the cockroach is a mechanoreceptor with a single sensory neuron. The response to a step movement is a burst of action potentials which decays to zero in about 1 s. This rapid adaptation is a property of the action potential initiating region of the neuron. 2. The oxidizing agents chloramine-T and N-chlorosuccinimide selectively and irreversibly remove sodium channel inactivation from neurons in several preparations and are believed to act by oxidation of methionine or cysteine residues in the proteins of the sodium channel. 3. Chloramine-T and N-chlorosuccinimide, applied for a controlled time period, eliminated the rapid adaptation of the tactile spine neuron to an electrical depolarization. After treatment it fired tonically in response to a steady current stimulus. Longer applications of the agents eventually raised the threshold for action potential initiation. 4. Threshold behavior in the tactile spine neuron was characterized by measuring strength-duration relationships for stimulation with extracellular current pulses at the action potential initiating region. The two oxidizing agents caused a voltage-dependent modification of the dynamic threshold properties which led to the change from rapidly adapting to tonic behavior. 5. Two stronger oxidizing agents, N-bromoacetamide and N-bromosuccinimide, raised the threshold of the neuron without removing rapid adaptation. These two agents act similarly to chloramine-T and N-chlorosuccinimide on sodium inactivation in other neurons but are believed to oxidize the tryptophan, tyrosine and histidine residues of proteins in addition to cysteine and methionine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号