首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic spines are cellular microcompartments that are isolated from their parent dendrites and neighboring spines. Recently, imaging studies of spine Ca(2+) dynamics have revealed that Ca(2+) can enter spines through voltage-sensitive and ligand-activated channels, as well as through Ca(2+) release from intracellular stores. Relationships between spine Ca(2+) signals and induction of various forms of synaptic plasticity are beginning to be elucidated. Measurements of spine Ca(2+) concentration are also being used to probe the properties of single synapses and even individual calcium channels in their native environment.  相似文献   

2.
Sabatini BL  Oertner TG  Svoboda K 《Neuron》2002,33(3):439-452
Spine Ca(2+) is critical for the induction of synaptic plasticity, but the factors that control Ca(2+) handling in dendritic spines under physiological conditions are largely unknown. We studied [Ca(2+)] signaling in dendritic spines of CA1 pyramidal neurons and find that spines are specialized structures with low endogenous Ca(2+) buffer capacity that allows large and extremely rapid [Ca(2+)] changes. Under physiological conditions, Ca(2+) diffusion across the spine neck is negligible, and the spine head functions as a separate compartment on long time scales, allowing localized Ca(2+) buildup during trains of synaptic stimuli. Furthermore, the kinetics of Ca(2+) sources governs the time course of [Ca(2+)] signals and may explain the selective activation of long-term synaptic potentiation (LTP) and long-term depression (LTD) by NMDA-R-mediated synaptic Ca(2+).  相似文献   

3.
Postsynaptic Ca2+ changes are involved in control of cellular excitability and induction of synaptic long-term changes. We monitored Ca2+ changes in dendrites and spines during synaptic and direct stimulation using high resolution microfluorometry of fura-2 injected into CA3 pyramidal neurons in guinea pig hippocampal slice. When driven by current injection from an intracellular electrode or with synaptic stimulation, postsynaptic Ca2+ accumulations were highest in the proximal dendrites with a pronounced fall-off towards the soma and some fall-off towards more distal dendrites. Muscarinic activation by low concentrations of carbachol strongly increased intradendritic Ca2+ accumulation during directly-evoked repetitive firing. This enhancement occurred in large part because muscarinic activation suppressed the normal Ca(2+)-dependent activation of K-channels that mediates adaptation of firing. Repetitive firing of cholinergic fibers in the slice reproduced the effects of carbachol. Inhibition of acetylcholine-esterase activity by eserine enhanced the effects of repetitive stimulation of chlolinergic fibers. All effects were reversible and were blocked by the muscarinic antagonist atropine. Ca2+ accumulations in postsynaptic spines might be the basis of specificity of synaptic plasticity. With selective stimulation of few associative/comissural fibers, Ca2+ accumulated in single postsynaptic spines but not in the parent dendrite. With strong stimulation, dendrite levels also increased but spine levels were considerably higher. The NMDA-receptor antagonist AP-5 blocked Ca(2+)-peaks in spines, but left Ca2+ changes in dendrite shafts largely unaffected. Sustained steep Ca2+ gradients between single spines and the parent dendrite, often lasting several minutes, developed with repeated stimulation. Our results demonstrate a spine entity that can act independent from the dendrite with respect to Ca(2+)-dependent processes. Muscarinic augmentation of dendritic Ca2+ levels might reduce diffusional loss of Ca2+ from hot spines into the parent dendrite, thus supporting cooperativity and associativity of synaptic plasticity.  相似文献   

4.
5.
Neuronal activity augments maturation of mushroom-shaped spines to form excitatory synapses, thereby strengthening synaptic transmission. We have delineated a Ca(2+)-signaling pathway downstream of the NMDA receptor that stimulates calmodulin-dependent kinase kinase (CaMKK) and CaMKI to promote formation of spines and synapses in hippocampal neurons. CaMKK and CaMKI form a multiprotein signaling complex with the guanine nucleotide exchange factor (GEF) betaPIX and GIT1 that is localized in spines. CaMKI-mediated phosphorylation of Ser516 in betaPIX enhances its GEF activity, resulting in activation of Rac1, an established enhancer of spinogenesis. Suppression of CaMKK or CaMKI by pharmacological inhibitors, dominant-negative (dn) constructs and siRNAs, as well as expression of the betaPIX Ser516Ala mutant, decreases spine formation and mEPSC frequency. Constitutively-active Pak1, a downstream effector of Rac1, rescues spine inhibition by dnCaMKI or betaPIX S516A. This activity-dependent signaling pathway can promote synapse formation during neuronal development and in structural plasticity.  相似文献   

6.
Increases in cytosolic Ca2+ concentration ([Ca2+]i) mediated by NMDA-sensitive glutamate receptors (NMDARs) are important for synaptic plasticity. We studied a wide variety of dendritic spines on rat CA1 pyramidal neurons in acute hippocampal slices. Two-photon uncaging and Ca2+ imaging revealed that NMDAR-mediated currents increased with spine-head volume and that even the smallest spines contained a significant number of NMDARs. The fate of Ca2+ that entered spine heads through NMDARs was governed by the shape (length and radius) of the spine neck. Larger spines had necks that permitted greater efflux of Ca2+ into the dendritic shaft, whereas smaller spines manifested a larger increase in [Ca2+]i within the spine compartment as a result of a smaller Ca2+ flux through the neck. Spine-neck geometry is thus an important determinant of spine Ca2+ signaling, allowing small spines to be the preferential sites for isolated induction of long-term potentiation.  相似文献   

7.
Do thin spines learn to be mushroom spines that remember?   总被引:5,自引:0,他引:5  
Dendritic spines are the primary site of excitatory input on most principal neurons. Long-lasting changes in synaptic activity are accompanied by alterations in spine shape, size and number. The responsiveness of thin spines to increases and decreases in synaptic activity has led to the suggestion that they are 'learning spines', whereas the stability of mushroom spines suggests that they are 'memory spines'. Synaptic enhancement leads to an enlargement of thin spines into mushroom spines and the mobilization of subcellular resources to potentiated synapses. Thin spines also concentrate biochemical signals such as Ca(2+), providing the synaptic specificity required for learning. Determining the mechanisms that regulate spine morphology is essential for understanding the cellular changes that underlie learning and memory.  相似文献   

8.
9.
Spinophilin is a protein phosphatase-1- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We have recently shown that the interaction of spinophilin with the actin cytoskeleton depends upon phosphorylation by protein kinase A. We have now found that spinophilin is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in neurons. Ca(2+)/calmodulin-dependent protein kinase II, located within the post-synaptic density of dendritic spines, is known to play a role in synaptic plasticity and is ideally positioned to regulate spinophilin. Using tryptic phosphopeptide mapping, site-directed mutagenesis and microsequencing analysis, we identified two sites of CaMKII phosphorylation (Ser-100 and Ser-116) within the actin-binding domain of spinophilin. Phosphorylation by CaMKII reduced the affinity of spinophilin for F-actin. In neurons, phosphorylation at Ser-100 by CaMKII was Ca(2+) dependent and was associated with an enrichment of spinophilin in the synaptic plasma membrane fraction. These results indicate that spinophilin is phosphorylated by multiple kinases in vivo and that differential phosphorylation may target spinophilin to specific locations within dendritic spines.  相似文献   

10.
It has been proposed that the small volume of a dendritic spine can amplify Ca2+ signals during synaptic transmission. Accordingly, we have performed calculations to determine whether the activation of N-methyl-D-aspartate (NMDA) type glutamate receptors during synaptic transmission results in significant elevation in intracellular Ca2+ levels, permitting optical detection of synaptic signals within a single spine. Simple calculations suggest that the opening of even a single NMDA receptor would result in the influx of approximately 310 000 Ca2+ ions into the small volume of a spine, producing changes in Ca2+ levels that are readily detectable using high affinity Ca2+ indicators such as fura-2 or fluo-3. Using fluorescent Ca2+ indicators, we have imaged local Ca2+ transients mediated by NMDA receptors in spines and dendritic shafts attributed to spontaneous miniature synaptic activity. Detailed analysis of these quantal events suggests that the current triggering these transients is attributed to the activation of <10 NMDA receptors. The frequency of these miniature synaptic Ca2+ transients is not randomly distributed across synapses, as some synapses can display a >10-fold higher frequency of transients than others. As expected for events mediated by NMDA receptors, miniature synaptic Ca2+ transients were suppressed by extracellular Mg2+ at negative membrane potentials; however, the Mg2+ block could be removed by depolarization.  相似文献   

11.
To understand the cell signaling of protein kinases, it is essential to monitor their activity in each of the subcellular compartments. Here we developed a method to visualize the activities of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the cytoplasm, plasma membrane, and nucleus, separately, by utilizing targeted phosphorylation motifs and phosphorylation-specific antibodies. This approach was used to monitor the activities of post-synaptic CaMKII in cultured hippocampal neurons. Strong stimulation of the neurons by N-methyl-d-aspartate led to global activations of CaMKII in the cell bodies and dendrites. On the other hand, weak stimulation by removal of Mg(2+) block of N-methyl-d-aspartate receptors induced CaMKII signaling localized within single dendritic spines. Post-synaptic CaMKII is thought to modify synaptic efficiency. The present data for the first time demonstrate the activation of CaMKII localized within single dendritic spines and are consistent with the notion that synaptic efficiency is modified by CaMKII in single or multiple spine level depending on the strength of receptor activation.  相似文献   

12.
Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca) imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs) on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively) that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK) channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.  相似文献   

13.
Bloodgood BL  Sabatini BL 《Neuron》2007,53(2):249-260
The roles of voltage-sensitive sodium (Na) and calcium (Ca) channels located on dendrites and spines in regulating synaptic signals are largely unknown. Here we use 2-photon glutamate uncaging to stimulate individual spines while monitoring uncaging-evoked excitatory postsynaptic potentials (uEPSPs) and Ca transients. We find that, in CA1 pyramidal neurons in acute mouse hippocampal slices, CaV(2.3) voltage-sensitive Ca channels (VSCCs) are found selectively on spines and act locally to dampen uncaging-evoked Ca transients and somatic potentials. These effects are mediated by a regulatory loop that requires opening of CaV(2.3) channels, voltage-gated Na channels, small conductance Ca-activated potassium (SK) channels, and NMDA receptors. Ca influx through CaV(2.3) VSCCs selectively activates SK channels, revealing the presence of functional Ca microdomains within the spine. Our results suggest that synaptic strength can be modulated by mechanisms that regulate voltage-gated conductances within the spine but do not alter the properties or numbers of synaptic glutamate receptors.  相似文献   

14.
Emptage N  Bliss TV  Fine A 《Neuron》1999,22(1):115-124
We have used confocal microscopy to monitor synaptically evoked Ca2+ transients in the dendritic spines of hippocampal pyramidal cells. Individual spines respond to single afferent stimuli (<0.1 Hz) with Ca2+ transients or failures, reflecting the probability of transmitter release at the activated synapse. Both AMPA and NMDA glutamate receptor antagonists block the synaptically evoked Ca2+ transients; the block by AMPA antagonists is relieved by low Mg2+. The Ca2+ transients are mainly due to the release of calcium from internal stores, since they are abolished by antagonists of calcium-induced calcium release (CICR); CICR antagonists, however, do not depress spine Ca2+ transients generated by backpropagating action potentials. These results have implications for synaptic plasticity, since they show that synaptic stimulation can activate NMDA receptors, evoking substantial Ca2+ release from the internal stores in spines without inducing long-term potentiation (LTP) or depression (LTD).  相似文献   

15.
Camiré O  Topolnik L 《Cell calcium》2012,52(5):339-346
Information processing within neural circuits depends largely on the dynamic interactions between the principal cells and inhibitory interneurons. It is further determined by the efficacy of synaptic transmission between individual circuit elements, which is in turn tightly regulated by changes in network activity to allow for numerous adaptations to occur at a single synapse. Intracellular calcium (Ca(2+)) is a crucial factor in the regulation of synaptic efficacy in neuronal networks. Evidence from high-resolution imaging studies has revealed the intricacies of how Ca(2+) signalling is organised in the dendrites of different cell types. Inhibitory interneurons exhibit a variety of postsynaptic Ca(2+) mechanisms, which are recruited by distinct activity patterns and are responsible for the formation of functionally segregated dendritic Ca(2+) microdomains. Furthermore, postsynaptic Ca(2+) signals in these cells not only contribute to the induction of synaptic plasticity but also may themselves undergo different forms of plastic modifications, depending on the activity level. This compartmentalised regulation of postsynaptic Ca(2+) signalling may have a significant impact on the induction of synaptic plasticity and on single-interneuron and network computations.  相似文献   

16.
Astrocytes are considered the third component of the synapse, responding to neurotransmitter release from synaptic terminals and releasing gliotransmitters--including glutamate--in a Ca(2+)-dependent manner to affect neuronal synaptic activity. Many studies reporting astrocyte-driven neuronal activity have evoked astrocyte Ca(2+) increases by application of endogenous ligands that directly activate neuronal receptors, making astrocyte contribution to neuronal effect(s) difficult to determine. We have made transgenic mice that express a Gq-coupled receptor only in astrocytes to evoke astrocyte Ca(2+) increases using an agonist that does not bind endogenous receptors in brain. By recording from CA1 pyramidal cells in acute hippocampal slices from these mice, we demonstrate that widespread Ca(2+) elevations in 80%-90% of stratum radiatum astrocytes do not increase neuronal Ca(2+), produce neuronal slow inward currents, or affect excitatory synaptic activity. Our findings call into question the developing consensus that Ca(2+)-dependent glutamate release by astrocytes directly affects neuronal synaptic activity in situ.  相似文献   

17.
We previously showed that the time-dependent intensification ("incubation") of cue-induced cocaine seeking after withdrawal from extended-access cocaine self-administration is accompanied by accumulation of Ca(2+)-permeable AMPA receptors (CP-AMPARs) in the rat nucleus accumbens (NAc). These results suggest an enduring change in Ca(2+) signaling in NAc dendritic spines. The purpose of the present study was to determine if Ca(2+) signaling via NMDA receptors (NMDARs) is also altered after incubation. Rats self-administered cocaine or saline for 10 days (6 h/day). After 45-47 days of withdrawal, NMDAR-mediated Ca(2+) entry elicited by glutamate uncaging was monitored in individual NAc dendritic spines. NMDAR currents were simultaneously recorded using whole cell patch clamp recordings. We also measured NMDAR subunit levels in a postsynaptic density (PSD) fraction prepared from the NAc of identically treated rats. NMDAR currents did not differ between groups, but a smaller percentage of spines in the cocaine group responded to glutamate uncaging with NMDAR-mediated Ca(2+) entry. No significant group differences in NMDAR subunit protein levels were found. The decrease in the proportion of spines showing NMDAR-mediated Ca(2+) entry suggests that NAc neurons in the cocaine group contain more spines which lack NMDARs (non-responding spines). The fact that cocaine and saline groups did not differ in NMDAR currents or NMDAR subunit levels suggests that the number of NMDARs on responding spines is not significantly altered by cocaine exposure. These findings are discussed in light of increases in dendritic spine density in the NAc observed after withdrawal from repeated cocaine exposure.  相似文献   

18.
We combined local photolysis of caged compounds with fluorescence imaging to visualize molecular diffusion within dendrites of cerebellar Purkinje cells. Diffusion of a volume marker, fluorescein dextran, within spiny dendrites was remarkably slow in comparison to its diffusion in smooth dendrites. Computer simulations indicate that this retardation is due to a transient trapping of molecules within dendritic spines, yielding anomalous diffusion. We considered the influence of spine trapping on the diffusion of calcium ions (Ca(2+)) and inositol-1,4,5-triphospate (IP(3)), two synaptic second messengers. Diffusion of IP(3) was strongly influenced by the presence of dendritic spines, while Ca(2+) was removed so rapidly that it could not diffuse far enough to be trapped. We conclude that an important function of dendritic spines may be to trap chemical signals and thereby create slowed anomalous diffusion within dendrites.  相似文献   

19.
Most excitatory synaptic terminals in the brain impinge on dendritic spines. We and others have recently shown that dynamic microtubules (MTs) enter spines from the dendritic shaft. However, a direct role for MTs in long-lasting spine plasticity has yet to be demonstrated and it remains unclear whether MT-spine invasions are directly influenced by synaptic activity. Lasting changes in spine morphology and synaptic strength can be triggered by activation of synaptic NMDA receptors (NMDARs) and are associated with learning and memory processes. To determine whether MTs are involved in NMDAR-dependent spine plasticity, we imaged MT dynamics and spine morphology in live mouse hippocampal pyramidal neurons before and after acute activation of synaptic NMDARs. Synaptic NMDAR activation promoted MT-spine invasions and lasting increases in spine size, with invaded spines exhibiting significantly faster and more growth than non-invaded spines. Even individual MT invasions triggered rapid increases in spine size that persisted longer following NMDAR activation. Inhibition of either NMDARs or dynamic MTs blocked NMDAR-dependent spine growth. Together these results demonstrate for the first time that MT-spine invasions are positively regulated by signaling through synaptic NMDARs, and contribute to long-lasting structural changes in targeted spines.  相似文献   

20.
Dendritic spine morphogenesis and plasticity   总被引:5,自引:0,他引:5  
Dendritic spines are small protrusions off the dendrite that receive excitatory synaptic input. Spines vary in size, likely correlating with the strength of the synapses they form. In the developing brain, spines show highly dynamic behavior thought to facilitate the formation of new synaptic contacts. Recent studies have illuminated the numerous molecules regulating spine development, many of which converge on the regulation of actin filaments. In addition, interactions with glial cells are emerging as important regulators of spine morphology. In many cases, spine morphogenesis, plasticity, and maintenance also depend on synaptic activity, as shown by recent studies demonstrating changes in spine dynamics and maintenance with altered sensory experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号