首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Astilbin (5,7,3',4'-tetrahydroxy-2,3-dihydroflavonol-3-?-o-rhamnoside), a flavonoid with a large range of biological activities, was isolated from Dimorphandra mollis, a shrub common to the Brazilian Cerrado. The purpose of this study is to verify the effects of astilbin on myeloperoxidase (MPO) and horseradish peroxidase (HRP), and its antioxidant activity against hypochlorous acid (HOCl) and total antioxidant activity (TAC) by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS?+). Astilbin inhibited MPO and HRP activities in a concentration-dependent relationship and effectively scavenged HOCl. The TAC by ABTS?+ of astilbin (IC50 ~ 20 mM) was higher than that of uric acid, which was used as a positive control. These data demonstrate that astilbin is a potent antioxidant and that it inhibits MPO and HRP activities efficiently.  相似文献   

2.
The antioxidant activity of C-Phycocyanin (C-PC) isolated from three cyanobacterial species Lyngbya (marine), Phormidium (marine) and Spirulina (fresh water) was studied in vitro. The results demonstrate that C-PCs from Lyngbya, Phormidium and Spirulina spp. are able to scavenge peroxyl radicals (determined by crocin bleaching assay) with relative rate constant ratio of 3.13, 1.89 and 1.8, respectively. C-PCs also scavenge hydroxyl radicals (determined by deoxyribose degradation assay) with second order rate constant values of 7.87 x 10(10), 9.58 x 10(10) and 6.42 x 10(10), respectively. Interestingly, Lyngbya C-PC is found to be an effective inhibitor of peroxyl radicals (IC50 6.63 microM), as compared to Spirulina (IC50 12.15 microM) and Phormidium C-PC (IC50 12.74 microM) and is close to uric acid (IC50 2.15 microM). Further, the studies suggest that the covalently-linked tetrapyrrole chromophore phycocyanobilin is involved in the radical scavenging activity of C-PC. The electron spin resonance (ESR) spectra of C-PCs indicate the presence of free radical active sites, which may play an important role in its radical scavenging property. This is the first report on the ESR activity of native C-PCs without perturbations that can cause radical formation.  相似文献   

3.
Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, P<.01) and moderately correlated with ORAC (r=0.34, P<.05). Pearson correlation analyses showed that plasma TAC values by VCEAC and ORAC had positive correlation with plasma uric acid (r=0.56 for VCEAC; r=0.49 for ORAC) and total phenolics (r=0.63 for VCEAC; r=0.36 for ORAC). However, TAC measured by FRAP was correlated only with uric acid (r=0.69). After multivariate adjustment, plasma TAC determined by VCEAC was positively associated with dietary intakes of γ-tocopherol (P<.001), β-carotene (P<.05), anthocyanidins (P<.05), flavones (P<.05), proanthocyanidins (P<.01) and TAC (P<.05), as well as with plasma total phenolics (P<.05), α-tocopherol (P<.001), β-cryptoxanthin (P<.05) and uric acid (P<.05). The findings indicate that plasma TAC measured by VCEAC reflects both dietary and plasma antioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP.  相似文献   

4.
Eight women were recruited for studying the effects of a meal on overall antioxidant status. Subjects resided in a metabolic research unit for two 36-h periods. During period A, subjects fasted overnight (12 h) and were then given a breakfast, a lunch, a snack, and a dinner. During period B, subjects fasted for 23 h and were then given a dinner. These meals were designed to contain negligible antioxidants. Blood samples were collected for analyzing total antioxidant capacity (TAC) and individual antioxidants. The results showed that serum TAC significantly increased by up to 23% after the consumption of the lunch and dinner during period A. Serum TAC did not increase until after the consumption of the dinner during period B. Among the antioxidants (vitamin C, alpha-tocopherol, bilirubin, and uric acid) examined, serum uric acid was the only one that showed a significant postprandial increase, which was also parallel to the postprandial response in serum TAC. These results indicate that food intake, even if low in antioxidants, can increase the serum total antioxidant activity.  相似文献   

5.
BACKGROUND: Tests measuring the combined antioxidant effect of the nonenzymatic defenses in biological fluids may be useful in providing an index of the organism's capability to counteract reactive species known as prooxidants, resist oxidative damage and combat oxidative stress-related diseases. The selected chromogenic redox reagent for the assay of human serum should be easily accessible, stable, selective, respond to all types of biologically important antioxidants such as ascorbic acid, alpha-tocopherol, beta-carotene, reduced glutathione (GSH), uric acid and bilirubin, regardless of chemical type or hydrophilicity. Currently, there is no rapid method for total antioxidant assay of human serum meeting the above criteria.METHODS: Our recently developed cupric reducing antioxidant capacity (CUPRAC) spectrophotometric method for a number of polyphenols and flavonoids using the copper(II)-neocuproine reagent in ammonium acetate buffer was now applied to a complete series of plasma antioxidants for the assay of total antioxidant capacity (TAC) of serum, and the resulting absorbance at 450 nm was recorded either directly (e.g. for ascorbic acid, alpha-tocopherol and glutathione) or after incubation at 50 degrees C for 20 min (e.g. for uric acid, bilirubin and albumin), quantitation being made by means of a calibration curve. The lipophilic antioxidants, alpha-tocopherol and beta-carotene, were assayed in dichloromethane (DCM). Lipophilic antioxidants of serum were extracted with n-hexane from an ethanolic solution of serum subjected to centrifugation. Hydrophilic antioxidants of serum were assayed after perchloric acid precipitation of proteins in the centrifugate.Results: The molar absorptivities, linear ranges and trolox equivalent antioxidant capacity (TEAC) coefficients of the serum antioxidants were established with respect to the CUPRAC spectrophotometric method, and the results (TEAC, or TEAC coefficients) were evaluated in comparison to the findings of the ABTS/TEAC reference method using persulfate as oxidant. As for hydrophilic phase, a linear correlation existed between the CUPRAC and ABTS findings (r=0.58), contrary to current literature reporting that either serum ORAC or serum ferric reducing antioxidant potency (FRAP) does not correlate at all with serum TEAC. The analytical responses of serum antioxidants were shown to be additive, enabling a TAC assay. The intra- and inter-assay CVs were 0.7 and 1.5%, respectively, for serum.Conclusions: The CUPRAC assay proved to be efficient for glutathione and thiol-type antioxidants, for which the FRAP test was nonresponsive. The findings of CUPRAC completely agreed with those of ABTS-persulfate for lipophilic phase. The additivity of absorbances of all the tested antioxidants confirmed that antioxidants in the CUPRAC test did not chemically interact among each other so as to cause an intensification or quenching of the theoretically expected absorbance. As a distinct advantage over other electron-transfer based assays (e.g. Folin, FRAP, ABTS, DPPH), CUPRAC is superior in regard to its realistic pH close to the physiological pH, favourable redox potential, accessibility and stability of reagents and applicability to lipophilic antioxidants as well as hydrophilic ones.  相似文献   

6.
The antioxidant capacity of human plasma was determined by following the oxidation kinetics of the lipid-soluble fluorescent marker BODIPY using 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (MeO-AMVN) as the lipophilic radical initiator. The results are expressed as a total antioxidant performance (TAP) value based on the inhibition of BODIPY oxidation, as determined by the appearance of green fluorescence, with respect to a control sample (phosphatidylcholine with or without delipidized human serum). The suitability of the assay was evaluated on the basis of its precision, reproducibility, and specificity. The intra- and interassay coefficients of variation both were less than 5%. The addition of a representative substrate of plasma peroxidation, phosphatidylcholine, up to 750mug/ml did not induce significant changes in the TAP value. Also, BODIPY photooxidation was not observed during the experimental time course (220min). The TAP values of 6 plasma samples from healthy donors were measured and correlated with the main plasma water- and lipid-soluble antioxidants (uric acid and ascorbic acid, alpha-tocopherol, and carotenoids) and lipid profiles. Significant correlations were found between TAP and uric acid (R=0.97, P<0.05) and cholesterol-adjusted alpha-tocopherol (R=0.93, P<0.01). The results confirm that the TAP assay is suitable to measure the antioxidant activity of plasma antioxidants localized in both the lipophilic and hydrophilic compartments.  相似文献   

7.
C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro   总被引:6,自引:0,他引:6  
C-Phycocyanin (from Spirulina platensis) effectively inhibited CCl(4)-induced lipid peroxidation in rat liver in vivo. Both native and reduced phycocyanin significantly inhibited peroxyl radical-induced lipid peroxidation in rat liver microsomes and the inhibition was concentration dependent with an IC(50) of 11.35 and 12.7 microM, respectively. The radical scavenging property of phycocyanin was established by studying its reactivity with peroxyl and hydroxyl radicals and also by competition kinetics of crocin bleaching. These studies have demonstrated that phycocyanin is a potent peroxyl radical scavenger with an IC(50) of 5.0 microM and the rate constant ratios obtained for phycocyanin and uric acid (a known peroxyl radical scavenger) were 1.54 and 3.5, respectively. These studies clearly suggest that the covalently linked chromophore, phycocyanobilin, is involved in the antioxidant and radical scavenging activity of phycocyanin.  相似文献   

8.
Uric acid is the most important non-enzymatic antioxidant present in human saliva. There is a great variability among individuals, both in salivary uric acid content and saliva total reactive antioxidant potential (TRAP). The uric acid present in saliva correlates with plasma uric acid, suggesting that the former is imported from plasma. There are not statistical differences between uric acid or TRAP values in saliva of smokers and non-smokers. Also, smoking a cigarette does not modify the levels of antioxidants present in saliva.  相似文献   

9.
Eight structurally similar dihydroxy and trihydroxyphenolic acids (protocatechuic acid, 3,4-dihydroxyphenylacetic acid, hydrocaffeic acid, caffeic acid, gallic acid, 3,4,5-trihydroxyphenylacetic acid, 3-(3,4,5-trihydroxyphenyl)propanoic acid and 3-(3,4,5-trihydroxyphenyl)propenoic acid) were examined for their total antioxidant capacity (TAC). Furthermore, their ability to scavenge peroxyl radicals, generated by AAPH in liposomes, was determined. The antioxidant/pro-oxidant activity of the compounds was screened using the 2′-deoxyguanosine assay. All compounds behave as radical scavengers, with 3,4,5-trihydroxyphenylacetic acid being the most potent. Nevertheless, in the lipid peroxidation assay an inverse ranking order was observed, 3,4-dihydroxyphenylacetic acid being the most effective compound. All the dihydroxylated compounds showed a pro-oxidant behaviour leading to an increase of 50% in 8-OH-dG induction. From the structure–antioxidant activity relationship studies performed it may be concluded that the number of phenolic groups and the type of the alkyl spacer between the carboxylic acid and the aromatic ring strongly influence the antioxidant activity.  相似文献   

10.
Eight structurally similar dihydroxy and trihydroxyphenolic acids (protocatechuic acid, 3,4-dihydroxyphenylacetic acid, hydrocaffeic acid, caffeic acid, gallic acid, 3,4,5-trihydroxyphenylacetic acid, 3-(3,4,5-trihydroxyphenyl)propanoic acid and 3-(3,4,5-trihydroxyphenyl)propenoic acid) were examined for their total antioxidant capacity (TAC). Furthermore, their ability to scavenge peroxyl radicals, generated by AAPH in liposomes, was determined. The antioxidant/pro-oxidant activity of the compounds was screened using the 2'-deoxyguanosine assay. All compounds behave as radical scavengers, with 3,4,5-trihydroxyphenylacetic acid being the most potent. Nevertheless, in the lipid peroxidation assay an inverse ranking order was observed, 3,4-dihydroxyphenylacetic acid being the most effective compound. All the dihydroxylated compounds showed a pro-oxidant behaviour leading to an increase of 50% in 8-OH-dG induction. From the structure-antioxidant activity relationship studies performed it may be concluded that the number of phenolic groups and the type of the alkyl spacer between the carboxylic acid and the aromatic ring strongly influence the antioxidant activity.  相似文献   

11.
This study aimed to evaluate the antioxidant activities of a cultured medicinal fungus--Armillariella mellea (Vahl. ex Fr.) Karst. (AM). Three antioxidant assay systems, namely cytochrome c, xanthine oxidase inhibition and FeCl2-ascorbic acid stimulated lipid peroxidation in rat tissue homogenate tests, were used. Total flavonoid and phenol contents of AM extracts were also analyzed. Results showed that both aqueous (AM-H2O) and ethanolic (AM-EtOH) extracts of solid state cultured AM showed antioxidant activities in a concentration-dependent manner. At concentrations 1-100 microg/ml, the free radical scavenging activity was 73.7-92.1% for AM-H2O, and 60.0-90.8% for AM-EtOH. These extracts also showed an inhibitory effect on xanthine oxidase activity, but with a lesser potency (IC50 - 9.17 microg/ml for AM-H2O and 7.48 microg/ml for AM-EtOH). In general, AM-H2O showed a stronger anti-lipid peroxidation activity on different rat's tissues than AM-EtOH. However, both AM extracts displayed a weak inhibitory effect on lipid peroxidation in plasma. Interestingly, the anti-lipid peroxidation activity of AM-H2O (IC50 - 6.66 microg/ml) in brain homogenate was as good as alpha-tocopherol (IC50 - 5.42 microg/ml). AM-H2O (80.0 mg/g) possessed a significant higher concentration of total flavonoids than AM-EtOH (30.0 mg/g), whereas no difference was noted in the total phenol content between these two extracts. These results conclude that AM extracts possess potent free radical scavenging and anti-lipid peroxidation activities, especially the AM-H20 in the brain homogenate.  相似文献   

12.
Tea polyphenols have strong in vitro antioxidant activity. Due to their limited bioavailability, however, their contribution to in vivo antioxidant activity may depend on the form of administration. A human intervention study was performed to evaluate the bioavailability and antioxidant capacity of (-)-epigallocatechin-3-gallate (EGCG) administered as a single large dose in the form of either purified EGCG or as green tea extract (Polyphenon E). Plasma concentrations of tea polyphenols were determined by high-performance liquid chromatography (HPLC) analysis combined with coulometric array electrochemical detection (ECD). We found no differences in plasma EGCG concentrations and trolox equivalents determined by the trolox equivalent antioxidant capacity assay after administration of either form of EGCG. However, we found that the plasma antioxidant activity was significantly affected by changes in the plasma urate concentration, which may have interfered with the effect of tea polyphenols on the antioxidant activity. In addition, lymphocyte 8-hydroxydeoxyguanosine to deoxyguanosine (8-OHdG/10(6)dG) ratios were determined by HPLC with ECD. The 8-OHdG/10(6)dG ratios did not change significantly during the 24 h following both EGCG interventions but correlated significantly within individuals determined during the two interventions separated by 1 week. In summary, changes in plasma uric acid due to dietary intake were significantly correlated to the plasma antioxidant activity and exerted a stronger influence on the plasma antioxidant activity compared with the EGCG intervention. In future studies of dietary effects on the plasma antioxidant capacity, changes in plasma uric acid will need to be closely monitored.  相似文献   

13.
The purpose of this study was to elucidate the participation of plasma PON1 (paraoxonase activity [PON] and arylesterase activity [ARE]) in antioxidant defense in response to a single bout of maximal exercise. PON, ARE, lipid profile, lipid peroxidation (thiobarbituric acid reactive substances [TBARS]), total antioxidant status (ferric reducing ability of plasma [FRAP]), concentration of uric acid [UA], and total bilirubin (TBil) were determined in the plasma before, at the bout and 2 h after maximal exercise on a treadmill in young sportsmen. Chosen physiological parameters also were controlled during maximal exercise. Following maximal exercise, the unaltered level of TBARS and increased FRAP were registered. ARE increment was the highest (37.6%) of all measured variables but lasted for a short time. UA increment was lower than ARE but long-lasting and correlated with FRAP. PON activity increment was associated with the combined effect of body weight, lean, body mass index (BMI) and basal metabolic rate (BMR). We conclude that PON1 is a co-factor of the first line of antioxidant defense during maximal exercise. Its activity is associated with body composition and not the physical fitness of the subjects.  相似文献   

14.
Assessment of antioxidant activity by using different in vitro methods   总被引:13,自引:0,他引:13  
In this study, six common tests for measuring antioxidant activity were evaluated by comparing four antioxidants and applying them to beverages (tea and juices): Trolox equivalent antioxidant capacity assay (TEAC I-III assay), Total radical-trapping antioxidant parameter assay (TRAP assay), 2,2-diphenyl- l -picrylhydrazyl assay (DPPH assay), N , N -dimethyl- p -phenylendiamine assay (DMPD assay), Photochemiluminescence assay (PCL assay) and Ferric reducing ability of plasma assay (FRAP assay). The antioxidants included gallic acid representing the group of polyphenols, uric acid as the main antioxidant in human plasma, ascorbic acid as a vitamin widely spread in fruits and Trolox ® as water soluble vitamin E analogue. The six methods presented can be divided into two groups depending on the oxidising reagent. Five methods use organic radical producers (TEAC I-III, TRAP, DPPH, DMPD, PCL) and one method works with metal ions for oxidation (FRAP). Another difference between these tests is the reaction procedure. Three assays use the delay in oxidation and determine the lag phase as parameter for the antioxidant activity (TEAC I, TRAP, PCL). They determine the delay of radical generation as well as the ability to scavenge the radical. In contrast, the assays TEAC II and III, DPPH, DMPD and FRAP analyse the ability to reduce the radical cation (TEAC II and III, DPPH, DMPD) or the ferric ion (FRAP). The three tests acting by radical reduction use preformed radicals and determine the decrease in absorbance while the FRAP assay measures the formed ferrous ions by increased absorbance. Gallic acid was the strongest antioxidant in all tests with exception of the DMPD assay. In contrast, uric acid and ascorbic acid showed low activity in some assays. Most of the assays determine the antioxidant activity in the micromolar range needing minutes to hours. Only one assay (PCL) is able to analyse the antioxidant activity in the nanomolar range. Black currant juice showed highest antioxidant activity in all tests compared to tea, apple juice and tomato juice. Despite these differences, results of these in vitro assays give an idea of the protective efficacy of secondary plant products. It is strongly recommended to use at least two methods due to the differences between the test systems investigated.  相似文献   

15.
Antioxidant potential of Aspergillus candidus MTCC 2202 broth filtrate extract was studied using different antioxidant models, whereas anti-inflammatory potential was studied using carrageenan-induced rat paw oedema model. The ethyl acetate extract at 1000 microg/ml showed maximum scavenging activity of the stable radical 1,1-diphenyl,2-picryl hydrazyl upto 96.65% (IC50=430.36 microg/ml) and scavenging of the radical cation, 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonate) upto 92.25% (IC50=606.29 microg/ml) at the same concentration. The extract had good reducing power, however showed moderate inhibition for conjugated dienes and thiobarbituric acid reactive acid substances (59.56 and 51.45%). The total phenolic content of various extracts of A. candidus broth filtrate was measured and a correlation between radical scavenging activities of extracts with total phenolic content was observed. The ethyl acetate extract (125 mg/kg ip) showed significant anti-inflammatory activity in carrageenan-induced rat paw oedema model. The exhibited antioxidant activity of ethyl acetate extract of A. candidus broth filtrate was comparable with BHA and ascorbic acid, while anti-inflammatory activity was comparable with standard diclofenac sodium.  相似文献   

16.
Approximately 12% of Americans do not consume the estimated average requirement for zinc and could be at risk for zinc deficiency. Since zinc has proposed antioxidant function, inadequate zinc consumption may lead to an enhanced susceptibility to oxidative stress through several mechanisms, including altered antioxidant defenses. In this study, we hypothesized that dietary zinc restriction would result in lower antioxidant status and increased oxidative damage. We fed weanling Sprague-Dawley rats (n=12 per group) a zinc-adequate (50 mg/kg of zinc) diet, a zinc-deficient (<0.05 mg/kg of zinc) diet or a pair-fed diet for 3 weeks and then assessed their antioxidant status and oxidative stress parameters. Rats were zinc deficient as indicated by a significant (P<.05) reduction in body weight (49%) and 19% lower (P<.05) hepatic zinc (20.6+/-2.1 mg/kg) as compared with zinc-adequate rats (24.6+/-2.2 mg/kg). Zinc deficiency resulted in elevated (P<.05) plasma F(2) isoprostanes. Zinc deficiency-mediated oxidative stress was accompanied by a 20% decrease (P<.05) in the ferritin-reducing ability of plasma assay and a 50% reduction in plasma uric acid (P<.05). No significant change in plasma ascorbic acid or in plasma alpha-tocopherol and gamma-tocopherol was observed. However, hepatic alpha-tocopherol and gamma-tocopherol concentrations were decreased by 38% and 27% (P<.05), respectively, as compared with those in zinc-adequate rats. Hepatic alpha-tocopherol transfer protein levels were unaltered (P>.05) by zinc deficiency, but cytochrome P450 (CYP) 4F2 protein levels were elevated (P<.05) as compared with those in zinc-adequate rats. Collectively, zinc deficiency increased oxidative stress, which may be partially explained by increased CYP activity and reductions in hepatic alpha-tocopherol and gamma-tocopherol and in plasma uric acid.  相似文献   

17.
To extract antioxidant peptide from hoki frame protein hydrolysate (APHPH), we employed six proteases (pepsin, trypsin, papain, alpha-chymotrypsin, Alcalase and Neutrase) for enzymatic hydrolysis, and the antioxidant activities of their hydrolysates were investigated using both lipid peroxidation inhibition assay and free radical scavenging assay by electron spin resonance spin-trapping technique. Among hydrolysates, peptic hydrolysate, having the highest antioxidant activity, further separated into four groups using ultrafiltration membranes and purified consecutive chromatographic methods. Finally, the purified peptide had a molecular mass of 1801 Da, and amino acid sequence was identified as Glu-Ser-Thr-Val-Pro-Glu-Arg-Thr-His-Pro-Ala-Cys-Pro-Asp-Phe-Asn. APHPH inhibited lipid peroxidation higher than that of alpha-tocopherol as positive control and efficiently quenched different sources of free radical: 1,1-diphenyl-2-pycryl-hydrazyl (IC(50)=41.37 microM), hydroxyl (IC(50)=17.77 microM), peroxyl (IC(50)=18.99 microM) and superoxide radicals (IC(50)=172.10 microM). Furthermore, APHPH decreased t-butylhydroperoxide-induced cytotoxicity on human embryonic lung fibroblasts and efficiently protected free-radical-induced DNA damage.  相似文献   

18.
To isolate and identify the plasma factor which stimulates prostaglandin I 2 production by rat aortic ring, a human plasma fraction which showed a major stimulating activity on prostaglandin I 2 production was purified by ultrafiltrate, Sephadex G-10 gel filtration and QAE-Sephadex column chromatography. The purified plasma factor was identified as uric acid by its ultraviolet and infrared absorption spectroscopy, and 1H nmr and 13C nmr spectroscopy. The stimulating activity of the purified plasma factor and that of authentic uric acid coincided with each other. The stimulating potency of uric acid at its physiological concentration in human plasma (about 50 micrograms/ml) was half of the deproteinized human plasma, and was about 30 fold stronger than that of L-tryptophan, a cofactor of prostaglandin hydroperoxidase.  相似文献   

19.
We have investigated the inhibitory effect of 2-hydroxymethyl-1-naphthol diacetate (TAC) on the respiratory burst of rat neutrophils and the underlying mechanism of action was also assessed in this study. TAC caused concentration-related inhibition of the formylmethionyl-leucyl-phenylalanine (fMLP) plus dihydrocytochalasin B (CB)- and phorbol 12-myristate 13-acetate (PMA)-induced superoxide anion (O2*-) generation (IC50 10.2+/-2.3 and 14.1+/-2.4 microM, respectively) and O2 consumption (IC50 9.6+/-2.9 and 13.3+/-2.7 microM, respectively) of neutrophils. TAC did not scavenge the generated O2*- during dihydroxyfumaric acid autoxidation. TAC inhibited both the transient elevation of [Ca2+]i in the presence or absence of [Ca2+]o (IC50 75.9+/-8.9 and 84.7+/-7.9 microM, respectively) and the generation of inositol trisphosphate (IP3) (IC50 72.0+/-9.7 microM) in response to fMLP. Cytosolic phospholipase C (PLC) activity was also reduced by TAC at a same range of concentrations. The PMA-induced PKC-beta associated to membrane was attenuated by TAC (about 80% inhibition at 30 microM). Upon exposure to fMLP, the cellular cyclic AMP level was decreased in neutrophils pretreated with TAC. TAC attenuated fMLP-induced phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 (IC50 17.4+/-1.7 microM), but not p38. The cellular formation of phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) induced by fMLP was inhibited by TAC in a concentration-dependent manner (IC50 25.4+/-2.4 and 25.9+/-1.4 microM, respectively). TAC had no effect on the O2*- generation of PMA-stimulated and arachidonic acid (AA)-stimulated NADPH oxidase preparations. However, TAC caused concentration-related decrease of the membrane associated p47phoX in PMA-stimulated neutrophils (about 80% inhibition at 30 microM). We conclude that inhibition by TAC of the neutrophil respiratory burst is probably attributable to the blockade of the p42/44 MAPK and phospholipase D (PLD) pathways, the membrane translocation of PKC, and to the failure in assembly of a functional NADPH oxidase complex. Blockade of the PLC pathway by TAC probably plays a minor role.  相似文献   

20.
《Free radical research》2013,47(6):417-425
The antioxidant activity of saliva has been investigated in 28 apparently healthy individuals and seven dental patients with periodontal disease. The results show that the major aqueous antioxidant component of whole saliva is uric acid, with lesser contributions from ascorbic acid and albumin. All are present at lower concentrations than those found in the plasma water. The total antioxidant activity (TAA) of saliva correlates (r2 = 0.972) with the concentration of uric acid, which contributes more than 70% of the TAA. Stimulation of salivary flow is associated with increased production of antioxidants. The antioxidant potential of saliva does not appear to be compromised in patients with periodontal disease but this may relate to the antioxidant flow from the gingival crevicular fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号