首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of long-term diets enriched with natural antioxidants was studied on Wistar rats with average initial body weight 150 g. After enrichment of the diet with selenium (0.1 ppm of sodium selenite per 100 g of diet), with vitamin E (6 mg of alpha-tocopherol per 100 g of diet) and selenium and vitamin E together the following results were obtained: diets enriched with selenium or vitamin E given for 12 months reduced the production of lipid peroxides in the liver and serum of the rats. On the other hand, addition of both antioxidants to the diet had no effect on lipid peroxide levels in the animals. Diet enrichment for 12 and 18 months with selenium or vitamin E had no effect on the levels of total cholesterol and HDL cholesterol. The obtained results suggest that selenium and alpha-tocopherol exert an inhibitory action on the processes of ageing in the experimental animal model.  相似文献   

2.
To test the hypothesis that burn and smoke injury will deplete tissue alpha-tocopherol and cause its faster plasma disappearance, deuterium-labeled vitamin E was administered to sheep exposed to both surface skin burn and smoke insufflation, which cause injuries similar to those of human victims of fire accidents. Two different protocols were used: (1) deuterated vitamin E was administered orally with food at time 0 (just before injury) or (2) the labeled vitamin E was administered orally with food the day before injury. The animals, which had been operatively prepared seven days before, were anesthetized and then received both 40% body surface area third-degree burn and 48 breaths of cotton smoke or sham injuries. All were resuscitated with Ringer's lactate solution (4 ml/kg/% BSA burn/24 h) and mechanically ventilated. Blood samples were collected at various times after vitamin E dosing. In both studies the depletion of plasma alpha-tocopherol was faster in the injured sheep. The sheep given deuterated vitamin E 24 h before injury had similar maximum alpha-tocopherol concentrations at similar times. The exponential rates of alpha-tocopherol disappearance were 1.5 times greater and half-lives were 12 h shorter (p < 0.05) in the injured sheep. In separate studies, various tissues were obtained from sheep that were sacrificed from 4 to 48 h after injury. The liver alpha-tocopherol concentrations in sheep killed at various times after injury seem to show a linear decrease at a rate of 0.1 nmol alpha-tocopherol/g liver per hour, suggesting that the liver is supplying alpha-tocopherol to maintain the plasma and lung alpha-tocopherol concentrations, but that this injury is so severe the liver is unable to maintain lung alpha-tocopherol concentrations. These findings suggest that alpha-tocopherol should be administered to burn patients to prevent vitamin E depletion and to protect against oxidative stress from burn injury.  相似文献   

3.
The study was performed in order to investigate a simple, efficient, reliable and rapid method of extracting and quantifying natural vitamin E for pressurized liquid extraction (PLE) as well as high-performance liquid chromatography (HPLC) analysis. Lyophilized Corylus avellana L. nut samples were powdered by high-speed milling with Waring blender for 40 s. alpha-Tocopherol was extracted from the nut tissue powder using dehydrated hexane fortified with 0.01% butylated hydroxytoluene (BHT, co-antioxidant). The rate of alpha-tocopherol accumulation showed differences among nut samples collected in different areas of Italy. Sarda Piccola nut biofactory contained higher amount (81.17 microg/g d.w) of alpha-tocopherol than other-local eleven Italian cultivar nuts. These results provide insight into the biofactory basis for alpha-tocopherol accumulation in hazelnut and give the suitable cultivar tissues to establish pilot-scale bioreactors production of natural bioactive vitamin E.  相似文献   

4.
Tocotrienols: Vitamin E beyond tocopherols   总被引:15,自引:0,他引:15  
Sen CK  Khanna S  Roy S 《Life sciences》2006,78(18):2088-2098
  相似文献   

5.
Cigarette smoking is associated with increased oxidative stress and increased risk of degenerative disease. As the major lipophilic antioxidant, requirements for vitamin E may be higher in smokers due to increased utilisation. In this observational study we have compared vitamin E status in smokers and non-smokers using a holistic approach by measuring plasma, erythrocyte, lymphocyte and platelet alpha- and gamma-tocopherol, as well as the specific urinary vitamin E metabolites alpha- and gamma-carboxyethyl-hydroxychroman (CEHC). Fifteen smokers (average age 27 years, smoking time 7.5 years) and non-smokers of comparable age, gender and body mass index (BMI) were recruited. Subjects completed a 7-day food diary and on the final day they provided a 24 h urine collection and a 20 ml blood sample for measurement of urinary vitamin E metabolites and total vitamin E in blood components, respectively. No significant differences were found between plasma and erythrocyte alpha- and gamma-tocopherol in smokers and non-smokers. However, smokers had significantly lower alpha-tocopherol (mean+/-SD, 1.34+/-0.31 micromol/g protein compared with 1.94+/-0.54, P = 0.001) and gamma-tocopherol (0.19+/-0.04 micromol/g protein compared with 0.26+/-0.08, P = 0.026) levels in their lymphocytes, as well as significantly lower alpha-tocopherol levels in platelets (1.09+/-0.49 micromol/g protein compared with 1.60+/-0.55, P = 0.014; gamma-tocopherol levels were similar). Interestingly smokers also had significantly higher excretion of the urinary gamma-tocopherol metabolite, gamma-CEHC (0.49+/-0.25mg/g creatinine compared with 0.32+/-0.16, P = 0.036) compared to non-smokers, while their alpha-CEHC (metabolite of alpha-tocopherol) levels were similar. There was no significant difference between plasma ascorbate, urate and F2-isoprostane levels. Therefore in this population of cigarette smokers (mean age 27 years, mean smoking duration 7.5 years), alterations to vitamin E status can be observed even without the more characteristic changes to ascorbate and F2-isoprostanes. We suggest that the measurement of lymphocyte and platelet vitamin E may represent a valuable biomarker of vitamin E status in relation to oxidative stress conditions.  相似文献   

6.
Some 80 years after its discovery, vitamin E has experienced a renaissance which is as surprising as it is trivial. Although vitamin E is essential for reproduction, in rats at least, and deficiency causes neurological disorders in humans, the main interest in the last decades has concentrated on its antioxidant functions. This focus has highly underestimated the biological importance of vitamin E, which by far exceeds the need for acting as a radical scavenger. Only recently has it become clear that vitamin E can regulate cellular signaling and gene expression. Out of the eight different tocols included in the term vitamin E, alpha-tocopherol often exerts specific functions, which is also reflected in its selective recognition by proteins such as the alpha-tocopherol transfer protein and alpha-tocopherol-associated proteins. Vitamin E forms other than alpha-tocopherol are very actively metabolised, which explains their low biopotency. In vivo, metabolism may also attenuate the novel functions of gamma-tocopherol and tocotrienols observed in vitro. On the other hand, metabolites derived from individual forms of vitamin E have been shown to exert effects by themselves. This article focuses on the metabolism and novel functions of vitamin E with special emphasis on differential biological activities of individual vitamin E forms.  相似文献   

7.
Vitamin E and its function in membranes   总被引:10,自引:0,他引:10  
Vitamin E is a fat-soluble vitamin. It is comprised of a family of hydrocarbon compounds characterised by a chromanol ring with a phytol side chain referred to as tocopherols and tocotrienols. Tocopherols possess a saturated phytol side chain whereas the side chain of tocotrienols have three unsaturated residues. Isomers of these compounds are distinguished by the number and arrangement of methyl substituents attached to the chromanol ring. The predominant isomer found in the body is alpha-tocopherol, which has three methyl groups in addition to the hydroxyl group attached to the benzene ring. The diet of animals is comprised of different proportions of tocopherol isomers and specific alpha-tocopherol-binding proteins are responsible for retention of this isomer in the cells and tissues of the body. Because of the lipophilic properties of the vitamin it partitions into lipid storage organelles and cell membranes. It is, therefore, widely distributed in throughout the body. Subcellular distribution of alpha-tocopherol is not uniform with lysosomes being particularly enriched in the vitamin compared to other subcellular membranes. Vitamin E is believed to be involved in a variety of physiological and biochemical functions. The molecular mechanism of these functions is believed to be mediated by either the antioxidant action of the vitamin or by its action as a membrane stabiliser. alpha-Tocopherol is an efficient scavenger of lipid peroxyl radicals and, hence, it is able to break peroxyl chain propagation reactions. The unpaired electron of the tocopheroxyl radical thus formed tends to be delocalised rendering the radical more stable. The radical form may be converted back to alpha-tocopherol in redox cycle reactions involving coenzyme Q. The regeneration of alpha-tocopherol from its tocopheroxyloxyl radical greatly enhances the turnover efficiency of alpha-tocopherol in its role as a lipid antioxidant. Vitamin E forms complexes with the lysophospholipids and free fatty acids liberated by the action of membrane lipid hydrolysis. Both these products form 1:1 stoichiometric complexes with vitamin E and as a consequence the overall balance of hydrophobic:hydrophillic affinity within the membrane is restored. In this way, vitamin E is thought to negate the detergent-like properties of the hydrolytic products that would otherwise disrupt membrane stability. The location and arrangement of vitamin E in biological membranes is presently unknown. There is, however, a considerable body of information available from studies of model membrane systems consisting of phospholipids dispersed in aqueous systems. From such studies using a variety of biophysical methods, it has been shown that alpha-tocopherol intercalates into phospholipid bilayers with the long axis of the molecule oriented parallel to the lipid hydrocarbon chains. The molecule is able to rotate about its long axis and diffuse laterally within fluid lipid bilayers. The vitamin does not distribute randomly throughout phospholipid bilayers but forms complexes of defined stoichiometry which coexist with bilayers of pure phospholipid. alpha-Tocopherol preferentially forms complexes with phosphatidylethanolamines rather than phosphatidylcholines, and such complexes more readily form nonlamellar structures. The fact that alpha-tocopherol does not distribute randomly throughout bilayers of phospholipid and tends to form nonbilayer complexes with phosphatidylethanolamines would be expected to reduce the efficiency of the vitamin in its action as a lipid antioxidant and to destabilise rather than stabilise membranes. The apparent disparity between putative functions of vitamin E in biological membranes and the behaviour in model membranes will need to be reconciled.  相似文献   

8.
To determine the effects of three high levels of dietary intake of alpha-tocopherol acetate (vitamin E) on the non-specific immune response of gilthead seabream (Sparus aurata L.), specimens were fed a commercial diet (100 mg alpha-tocopherol kg-1) as control, or vitamin E supplemented diets (600, 1200 or 1800 mg alpha-tocopherol acetate kg-1) for 15, 30 or 45 days. Growth, serum alpha-tocopherol levels, natural haemolytic complement activity and head-kidney leucocyte migratory, respiratory burst and phagocytic activities were studied at each of the assay times. A positive correlation between alpha-tocopherol acetate intake and serum alpha-tocopherol levels was observed, the increase being linked to both the dosage and length of treatment. Specimens fed the diet supplemented with 600 mg vitamin E kg-1 showed no enhancement in any of their immune parameters, while those fed the diet supplemented with 1200 mg vitamin E kg-1 presented a slightly higher (but not statistically significant) specific growth rate than fish fed the other diets. In addition, serum haemolytic activity and the phagocytosis of head-kidney leucocytes were enhanced by the dietary intake of 1200 mg vitamin E kg-1 after 30 and 45 days of treatment, although leucocyte migration and respiratory burst activity remained unaffected. The highest vitamin E dietary dose used, 1800 mg kg-1, unexpectedly provoked no immunostimulation. These results indicate that a moderate level of vitamin E in the diet (1200 mg kg-1) stimulates the seabream's non-specific immune system after 30 days of administration. Lower or higher vitamin E concentrations may not be so effective, because of an imbalance in the vitamin E ratio with other antioxidants. The proposed dietary levels of vitamin together with the indicated administration time could be useful for reducing the susceptibility of farmed fish to infectious diseases.  相似文献   

9.
Natural vitamin E includes four tocopherols and four tocotrienols. RRR-alpha-tocopherol is the most abundant form in nature and has the highest biological activity. Although vitamin E is the main lipid-soluble antioxidant in the body, not all its properties can be assigned to this action. As antioxidant, vitamin E acts in cell membranes where prevents the propagation of free radical reactions, although it has been also shown to have pro-oxidant activity. Non-radical oxidation products are formed by the reaction between alpha-tocopheryl radical and other free radicals, which are conjugated to glucuronic acid and excreted through the bile or urine. Vitamin E is transported in plasma lipoproteins. After its intestinal absorption vitamin E is packaged into chylomicrons, which along the lymphatic pathway are secreted into the systemic circulation. By the action of lipoprotein lipase (LPL), part of the tocopherols transported in chylomicrons are taken up by extrahepatic tissues, and the remnant chylomicrons transport the remaining tocopherols to the liver. Here, by the action of the "alpha-tocopherol transfer protein", a major proportion of alpha-tocopherol is incorporated into nascent very low density lipoproteins (VLDL), whereas the excess of alpha-tocopherol plus the other forms of vitamin E are excreted in bile. Once secreted into the circulation, VLDL are converted into IDL and LDL by the action of LPL, and the excess of surface components, including alpha-tocopherol, are transferred to HDL. Besides the LPL action, the delivery of alpha-tocopherol to tissues takes place by the uptake of lipoproteins by different tissues throughout their corresponding receptors. Although we have already a substantial information on the action, effects and metabolism of vitamin E, there are still several questions open. The most intriguing is its interaction with other antioxidants that may explain how foods containing small amounts of vitamin E provide greater benefits than larger doses of vitamin E alone.  相似文献   

10.
Experiments were designed to determine how varying levels of plasma lipids affect tissue deposition of alpha-tocopherol (vitamin E). Hypolipemia was induced by feeding orotic acid, and hyperlipemia was obtained using genetically obese rats. With equal dietary intakes of alpha-tocopherol, hypolipemic rats had lower plasma and tissue concentrations than rats with normal plasma lipids. An exception was liver, which due to fatty enlargement from orotic acid had more alpha-tocopherol. Hyperlipemic obese rats had plasma total lipids and alpha-tocopherol three times those of normal rats with the same intake of alpha-tocopherol. Tissue concentrations of the vitamin, however, were considerably lower in obese rats. Due to their large adipose mass, obese rats had considerably more total body alpha-tocopherol than normal rats. It was concluded that both plasma lipid levels and degree of adiposity are important factors in determining tissue deposition of alpha-tocopherol.  相似文献   

11.
Vitamin E is the major lipid-soluble chain-breaking antioxidant in mammals and plays an important role in normal development and physiology. Deficiency (whether dietary or genetic) results in primarily nervous system pathology, including cerebellar neurodegeneration and progressive ataxia (abnormal gait). However, despite the widely acknowledged antioxidant properties of vitamin E, only a few studies have directly correlated levels of reactive oxygen species with vitamin E availability in animal models. We explored the relationship between vitamin E and reactive oxygen species in two mouse models of vitamin E deficiency: dietary deficiency and a genetic model (tocopherol transfer protein, Ttp-/- mice). Both groups of mice developed nearly complete depletion of alpha-tocopherol (the major tocopherol in vitamin E) in most organs, but not in the brain, which was relatively resistant to loss of alpha-tocopherol. F4-neuroprostanes, an index of lipid peroxidation, were unexpectedly lower in brains of deficient mice compared with controls. In vivo oxidation of dihydroethidium by superoxide radical was also significantly lower in brains of deficient animals. Superoxide production by brain mitochondria isolated from vitamin E-deficient and Ttp-/- mice, measured by electron paramagnetic resonance spectroscopy, demonstrated a biphasic dependence on exogenously added alpha-tocopherol. At low concentrations, alpha-tocopherol enhanced superoxide flux from mitochondria, a response that was reversed at higher concentrations. Here we propose a mechanism, supported by molecular modeling, to explain decreased superoxide production during alpha-tocopherol deficiency and speculate that this could be a beneficial response under conditions of alpha-tocopherol deficiency.  相似文献   

12.
Cell calcium, vitamin E, and the thiol redox system in cytotoxicity   总被引:4,自引:0,他引:4  
The controversial role of extracellular Ca2+ in toxicity to in vitro hepatocyte systems is reviewed. Recent reports demonstrate that extracellular Ca2+-related cytotoxicity is dependent on Ca2+-influenced vitamin E (alpha-tocopherol) content of isolated hepatocytes. Based on a Ca2+-omission model of in vitro oxidative stress, the role of vitamin E in cytotoxicity is further explored. This model demonstrates the interdependence of the GSH redox system and vitamin E as protective agents during oxidative stress. Following chemical oxidant-induced depletion of intracellular GSH, cell morphology and viability are maintained by the continuous presence of cellular alpha-tocopherol above a threshold level of 0.6-1.0 nmol/10(6) cells. alpha-Tocopherol threshold-dependent cell viability is directly correlated with the prevention of the loss of cellular protein thiols in the absence of intracellular GSH. Potential mechanisms for this phenomenon are explored and include a direct reductive action of alpha-tocopherol on protein thiyl radicals, and the prevention of oxidation of protein thiols by scavenging of lipid peroxyl radicals by alpha-tocopherol. It is suggested that in light of the threshold phenomenon of vitamin E prevention of potentially severe oxidative stress-induced cytotoxicity, its use as a protective agent against an oxidative challenge in vivo should be reassessed.  相似文献   

13.
In that data were not available on the vitamin E status of young children, the aim of the study was to evaluate the vitamin E status of preschool children by three commonly used criteria: vitamin E intakes, plasma alpha-tocopherol concentrations and plasma alpha-tocopherol/total lipid ratios. Twenty-two ethnically diverse preschool children (13 males and 9 females), aged 2 to 5 years, living in Lincoln, NE, served as subjects. The subjects were in two groups: 2-3 and 4-5 years old. Energy, fat, and alpha- and gamma-tocopherol intakes of the subjects were estimated utilizing two 24-h food recalls. Plasma alpha- and gamma-tocopherol and total lipid concentrations were ascertained. No significant differences by age grouping or gender were observed for vitamin E intakes, plasma alpha-tocopherol concentrations, plasma gamma-tocopherol concentrations and plasma alpha-tocopherol/total lipid ratios of subjects. Plasma alpha-tocopherol concentrations indicative of less than adequate status (<12 micromol/L) were observed in 91% of the children, and values <7 micromol/L (proposed cutoff for pediatric populations) in 68%. Sixty-eight percent of the subjects had plasma alpha-tocopherol/total lipid values <0.8 mg/g. The majority of the 2- to 5-year-old children included in the study had less than adequate vitamin E status.  相似文献   

14.
The effect of dietary vitamin E on the intermembrane transfer of (3R)-alpha-tocopherol, a spontaneous process accelerated in the presence of an alpha-tocopherol binding protein (alpha TBP), was examined. The transfer activity of this cytosolic liver protein was assayed via in vitro transfer of (3R)-alpha-[3H]tocopherol (alpha[3H]T) from egg lecithin liposomes to human erythrocyte ghosts (EG). Male Fisher 344 rats (1 and 20 months old) were fed diets containing 0, 30, and 500 mg/kg vitamin E (dl-alpha-tocopheryl acetate) for 15 weeks. Liver cytosol fractions were assayed for alpha[3H]T transfer activity (alpha TTA). Among young rats, those fed vitamin E-deficient diets had the highest alpha TTA, 5.02 +/- 3.10 pmole alpha[3H]T/min (mean +/- SD), which was different (P less than 0.05) from the spontaneous transfer rate of 2.10 pmole/min. Neither young rats fed 30 and 500 mg/kg vitamin E diets nor any of the aged rats showed alpha TTA which differed significantly from the spontaneous transfer rate. To examine the relationship between hepatic alpha-tocopherol levels and alpha TTA, alpha-tocopherol concentration per gram of wet liver was assayed by HPLC. A steep positive slope (6.39 +/- 1.46 pmole min-1 nmole g-1) and strong correlation (r = 0.873) between hepatic alpha-tocopherol and alpha TTA were observed (P less than 0.005) among young vitamin E-deficient rats. The data indicates that alpha TTA varies directly with hepatic alpha-tocopherol concentration when total liver vitamin E stores are very low. Thus, alpha TBP-mediated transfer of alpha-tocopherol may be manifest only when vitamin E status is compromised.  相似文献   

15.
Vitamin E (measured as alpha-tocopherol) and cholesterol concentrations were determined in plasma samples collected from 86 clinically healthy captive adult bustards of six species and 23 captive juveniles (6-12 mo old) of two of these species. Adult houbara bustards (Chlamydotis undulata macqueenii) had higher plasma alpha-tocopherol concentrations than juveniles (adult: mean +/- SE, 11.07 +/- 0.41 micrograms/ml, n = 32; juvenile: 6.33 +/- 0.48, n = 12) and higher alpha-tocopherol: cholesterol ratios (adult: 6.09 +/- 0.44, n = 12; juvenile: 2.94 +/- 0.22, n = 11). No age difference was evident for kori bustard (Ardeotis kori) plasma alpha-tocopherol concentrations (adult: 4.43 +/- 0.42, n = 21; juvenile: 4.46 +/- 0.26, n = 11) or alpha-tocopherol: cholesterol ratios (adult: 3.67 +/- 0.44, n = 20; juvenile: 3.71 +/- 0.36, n = 11). Adult houbara bustards had significantly higher (P < 0.01) alpha-tocopherol concentrations compared with adult rufous-crested (Eupodotis ruficrista; 6.64 +/- 0.33, n = 19) and white-bellied (Eupodotis senegalensis; 7.75 +/- 0.81, n = 8) bustards, but similar alpha-tocopherol: cholesterol ratios (rufous-crested: 5.56 +/- 0.32, n = 18; white-bellied: 5.83 +/- 0.43, n = 8). Juvenile houbara bustards had higher plasma alpha-tocopherol concentrations than juvenile kori bustards but similar alpha-tocopherol:cholesterol ratios. Adult houbara bustard plasma alpha-tocopherol levels and alpha-tocopherol:cholesterol ratios did not differ significantly between sexes. The vitamin E status of adult bustards appeared to be influenced by environmental conditions that varied due to species-specific husbandry regimens, but no clear relationship was seen with dietary vitamin E levels. Juvenile bustards did not have higher vitamin E levels than adults, despite being maintained on four-fold dietary vitamin E concentrations and in similar environmental conditions. This paper presents the first published data for plasma vitamin E concentrations in bustards. The plasma alpha-tocopherol and cholesterol concentrations and alpha-tocopherol:cholesterol ratios of captive bustards were similar to those previously reported for omnivorous avian species. Further research is required to determine which components of the identified environmental conditions affect bustard vitamin E status and to confirm whether differences exist between species independent of the variation in their management regimes.  相似文献   

16.
Vitamin E: function and metabolism.   总被引:32,自引:0,他引:32  
Although vitamin E has been known as an essential nutrient for reproduction since 1922, we are far from understanding the mechanisms of its physiological functions. Vitamin E is the term for a group of tocopherols and tocotrienols, of which alpha-tocopherol has the highest biological activity. Due to the potent antioxidant properties of tocopherols, the impact of alpha-tocopherol in the prevention of chronic diseases believed to be associated with oxidative stress has often been studied, and beneficial effects have been demonstrated. Recent observations that the alpha-tocopherol transfer protein in the liver specifically sorts out RRR-alpha-tocopherol from all incoming tocopherols for incorporation into plasma lipoproteins, and that alpha-tocopherol has signaling functions in vascular smooth muscle cells that cannot be exerted by other forms of tocopherol with similar antioxidative properties, have raised interest in the roles of vitamin E beyond its antioxidative function. Also, gamma-tocopherol might have functions apart from being an antioxidant. It is a nucleophile able to trap electrophilic mutagens in lipophilic compartments and generates a metabolite that facilitates natriuresis. The metabolism of vitamin E is equally unclear. Excess alpha-tocopherol is converted into alpha-CEHC and excreted in the urine. Other tocopherols, like gamma- and delta-tocopherol, are almost quantitatively degraded and excreted in the urine as the corresponding CEHCs. All rac alpha-tocopherol compared to RRR-alpha-tocopherol is preferentially degraded to alpha-CEHC. Thus, there must be a specific, molecular role of RRR-alpha-tocopherol that is regulated by a system that sorts, distributes, and degrades the different forms of vitamin E, but has not yet been identified. In this article we try to summarize current knowledge on the function of vitamin E, with emphasis on its antioxidant vs. other properties, the preference of the organism for RRR-alpha-tocopherol, and its metabolism to CEHCs.  相似文献   

17.
Alpha-tocopherol transfer protein (alpha-TTP) is a liver protein responsible for the selective retention of alpha-tocopherol from dietary vitamin E, which is a mixture of alpha, beta, gamma, and delta-tocopherols and the corresponding tocotrienols. The alpha-TTP-mediated transfer of alpha-tocopherol into nascent VLDL is the major determinant of plasma alpha-tocopherol levels in humans. Mutations in the alpha-TTP gene have been detected in patients suffering from low plasma alpha-tocopherol and ataxia with isolated vitamin E deficiency (AVED). The crystal structure of alpha-TTP reveals two conformations. In its closed tocopherol-charged form, a mobile helical surface segment seals the hydrophobic binding pocket. In the presence of detergents, an open conformation is observed, which probably represents the membrane-bound form. The selectivity of alpha-TTP for RRR-alpha-tocopherol is explained from the van der Waals contacts occurring in the lipid-binding pocket. Mapping the known mutations leading to AVED onto the crystal structure shows that no mutations occur directly in the binding pocket.  相似文献   

18.
Twelve clinically healthy subjects participated in a vitamin E supplementation study. Eight were given daily dosages of 150, 225, 800, or 1200 IU RRR-alpha-tocopherol for 21 days (two persons per dose) and four received placebo. Prior, during, and after the supplementation period, alpha-tocopherol, gamma-tocopherol, and carotenoids were determined in plasma and low density lipoprotein (LDL). The maximum levels of alpha-tocopherol were 1.7- to 2.5-times the baseline values in plasma and 1.7- to 3.1-times in LDL. A high correlation existed between alpha-tocopherol in plasma and LDL. gamma-Tocopherol significantly decreased in plasma and LDL during vitamin E supplementation. No significant influence on the lipoprotein and lipid status and carotenoid levels of the participants occurred throughout the supplementation. The resistance of LDL against copper-mediated oxidation was also measured. The oxidation resistance of LDL was significantly higher during vitamin E supplementation. However, the efficacy of vitamin E in protecting LDL varied from person to person. The statistical evaluation of all data gave a correlation of r2 = 0.51 between alpha-tocopherol in LDL and the oxidation resistance as measured by the length of the lag-phase preceding the oxidation of LDL. No association was seen between levels of carotenoids and vitamin E in plasma and LDL. The present study clearly shows that in humans the oxidation resistance of LDL can be increased by vitamin E supplementation.  相似文献   

19.
Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (alpha-tocopherol). We have tested the hypothesis that alpha-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 microM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received alpha-tocopherol supplements (400 IU RRR-alpha-tocopherol/day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM-1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-kappaB in isolated resting monocytes, nor any effect of alpha-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and alpha-tocopherol concentration. In conclusion, alpha-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration.  相似文献   

20.
Vitamin E, antioxidant and nothing more   总被引:2,自引:0,他引:2  
All of the naturally occurring vitamin E forms, as well as those of synthetic all-rac-alpha-tocopherol, have relatively similar antioxidant properties, so why does the body prefer alpha-tocopherol as its unique form of vitamin E? We propose the hypothesis that all of the observations concerning the in vivo mechanism of action of alpha-tocopherol result from its role as a potent lipid-soluble antioxidant. The purpose of this review then is to describe the evidence for alpha-tocopherol's in vivo function and to make the claim that alpha-tocopherol's major vitamin function, if not only function, is that of a peroxyl radical scavenger. The importance of this function is to maintain the integrity of long-chain polyunsaturated fatty acids in the membranes of cells and thus maintain their bioactivity. That is to say that these bioactive lipids are important signaling molecules and that changes in their amounts, or in their loss due to oxidation, are the key cellular events that are responded to by cells. The various signaling pathways that have been described by others to be under alpha-tocopherol regulation appear rather to be dependent on the oxidative stress of the cell or tissue under question. Moreover, it seems unlikely that these pathways are specifically under the control of alpha-tocopherol given that various antioxidants other than alpha-tocopherol and various oxidative stressors can manipulate their responses. Thus, virtually all of the variation and scope of vitamin E's biological activity can be seen and understood in the light of protection of polyunsaturated fatty acids and the membrane qualities (fluidity, phase separation, and lipid domains) that polyunsaturated fatty acids bring about.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号