首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Rapid new diagnostic methods (including Xpert MTB/RIF assay) use rifampicin resistance as a surrogate marker for multidrug resistant tuberculosis. Patients infected with rifampicin susceptible strains are prescribed first line anti-tuberculosis therapy. The roll out of such methods raises a concern that strains with resistance to other first line anti-tuberculosis drugs including isoniazid will be missed and inappropriate treatment given. To evaluate implications of using such methods review of resistance data from high burden settings such as ours is essential.

Objective

To determine resistance to first line anti-tuberculosis drugs amongst rifampicin susceptible pulmonary Mycobacterium tuberculosis (MTB) isolates from Pakistan.

Materials and Methods

Data of pulmonary Mycobacterium tuberculosis strains isolated in Aga Khan University Hospital (AKUH) laboratory (2009–2011) was retrospectively analyzed. Antimicrobial susceptibility profile of rifampicin susceptible isolates was evaluated for resistance to isoniazid, pyrazinamide, ethambutol, and streptomycin.

Results

Pulmonary specimens submitted to AKUH from 2009 to 2011 yielded 7738 strains of Mycobacterium tuberculosis. These included 54% (n 4183) rifampicin susceptible and 46% (n: 3555) rifampicin resistant strains. Analysis of rifampicin susceptible strains showed resistance to at least one of the first line drugs in 27% (n:1133) of isolates. Overall isoniazid resistance was 15.5% (n: 649), with an isoniazid mono-resistance rate of 4% (n: 174). Combined resistance to isoniazid, pyrazinamide, and ethambutol was noted in 1% (n: 40), while resistance to isoniazid, pyrazinamide, ethambutol, and streptomycin was observed in 1.7% (n: 70) of strains.

Conclusions

Our data suggests that techniques (including Xpert MTB/RIF assay) relying on rifampicin susceptibility as an indicator for initiating first line therapy will not detect patients infected with MTB strains resistant to other first line drugs (including isoniazid). The roll out of these techniques must therefore be accompanied by strict monitoring ensuring early resistance detection to increase chances of improved patient outcomes.  相似文献   

2.

Introduction

Resistance of Mycobacterium tuberculosis (MTB) to anti-tuberculosis (TB) drugs presents a serious challenge to TB control worldwide. We investigated the status of drug resistance, including multidrug-resistant (MDR) TB, and possible risk factors among newly diagnosed TB patients in Hanoi, the capital of Viet Nam.

Methods

Clinical and epidemiological information was collected from 506 newly diagnosed patients with sputum smear- and culture-positive TB, and 489 (96.6%) MTB isolates were subjected to conventional drug susceptibility testing, spoligotyping, and 15-locus variable numbers of tandem repeats typing. Adjusted odds ratios (aORs) were calculated to analyze the risk factors for primary drug resistance.

Results

Of 489 isolates, 298 (60.9%) were sensitive to all drugs tested. Resistance to isoniazid, rifampicin, streptomycin, ethambutol, and MDR accounted for 28.2%, 4.9%, 28.2%, 2.9%, and 4.5%, respectively. Of 24 isolates with rifampicin resistance, 22 (91.7%) were MDR and also resistant to streptomycin, except one case. Factors associated with isoniazid resistance included living in old urban areas, presence of the Beijing genotype, and clustered strains [aOR = 2.23, 95% confidence interval (CI) 1.15–4.35; 1.91, 1.18–3.10; and 1.69, 1.06–2.69, respectively). The Beijing genotype was also associated with streptomycin resistance (aOR = 2.10, 95% CI 1.29–3.40). Human immunodeficiency virus (HIV) coinfection was associated with rifampicin resistance and MDR (aOR = 5.42, 95% CI 2.07–14.14; 6.23, 2.34–16.58, respectively).

Conclusion

Isoniazid and streptomycin resistance was observed in more than a quarter of TB patients without treatment history in Hanoi. Transmission of isoniazid-resistant TB among younger people should be carefully monitored in urban areas, where Beijing strains and HIV coinfection are prevalent. Choosing an optimal treatment regimen on the basis of the results of drug susceptibility tests and monitoring of treatment adherence would minimize further development of drug resistance strains.  相似文献   

3.

Background

There is an urgent demand for rapid and accurate drug-susceptibility testing for the detection of multidrug-resistant tuberculosis. The GenoType MTBDRplus assay is a promising molecular kit designed for rapid identification of resistance to first-line anti-tuberculosis drugs, isoniazid and rifampicin. The aim of this meta-analysis was to evaluate the diagnostic accuracy of GenoType MTBDRplus in detecting drug resistance to isoniazid and rifampicin in comparison with the conventional drug susceptibility tests.

Methods

We searched PubMed, EMBASE, and Cochrane Library databases to identify studies according to predetermined criteria. A total of 40 studies were included in the meta-analysis. QUADAS-2 was used to assess the quality of included studies with RevMan 5.2. STATA 13.0 software was used to analyze the tests for sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the summary receiver operating characteristic curves. Heterogeneity in accuracy measures was tested with Spearman correlation coefficient and Chi-square.

Results

Patient selection bias was observed in most studies. The pooled sensitivity (95% confidence intervals were 0.91 (0.88–0.94) for isoniazid, 0.96 (0.95–0.97) for rifampicin, and 0.91(0.86–0.94) for multidrug-resistance. The pooled specificity (95% CI) was 0.99 (0.98–0.99) for isoniazid, 0.98 (0.97–0.99) for rifampicin and 0.99 (0.99–1.00) for multidrug-resistance, respectively. The area under the summary receiver operating characteristic curves ranged from 0.99 to 1.00.

Conclusion

This meta-analysis determined that GenoType MTBDRplus had good accuracy for rapid detection of drug resistance to isoniazid and/or rifampicin of M. tuberculosis. MTBDRplus method might be a good alternative to conventional drug susceptibility tests in clinical practice.  相似文献   

4.

Background

Multidrug resistant and extensively drug resistant tuberculosis (TB) have become major threats to control of tuberculosis globally. The rates of anti-TB drug resistance in Uganda are not known. We conducted a national drug resistance survey to investigate the levels and patterns of resistance to first and second line anti-TB drugs among new and previously treated sputum smear-positive TB cases.

Methods

Sputum samples were collected from a nationally representative sample of new and previously treated sputum smear-positive TB patients registered at TB diagnostic centers during December 2009 to February 2011 using a weighted cluster sampling method. Culture and drug susceptibility testing was performed at the national TB reference laboratory.

Results

A total of 1537 patients (1397 new and 140 previously treated) were enrolled in the survey from 44 health facilities. HIV test result and complete drug susceptibility testing (DST) results were available for 1524 (96.8%) and 1325 (85.9%) patients, respectively. Of the 1209 isolates from new cases, resistance to any anti-TB drug was 10.3%, 5% were resistant to isoniazid, 1.9% to rifampicin, and 1.4% were multi drug resistant. Among the 116 isolates from previously treated cases, the prevalence of resistance was 25.9%, 23.3%, 12.1% and 12.1% respectively. Of the 1524 patients who had HIV testing 469 (30.7%) tested positive. There was no association between anti-TB drug resistance (including MDR) and HIV infection.

Conclusion

The prevalence of anti-TB drug resistance among new patients in Uganda is low relative to WHO estimates. The higher levels of MDR-TB (12.1%) and resistance to any drug (25.3%) among previously treated patients raises concerns about the quality of directly observed therapy (DOT) and adherence to treatment. This calls for strengthening existing TB control measures, especially DOT, routine DST among the previously treated TB patients or periodic drug resistance surveys, to prevent and monitor development and transmission of drug resistant TB.  相似文献   

5.
《PloS one》2013,8(7)

Background

Shortening tuberculosis (TB) treatment duration is a research priority. This paper presents data from a prematurely terminated randomized clinical trial, of 4-month moxifloxacin or gatifloxacin regimens, in South India.

Methods

Newly diagnosed, sputum-positive HIV-negative pulmonary TB patients were randomly allocated to receive gatifloxacin or moxifloxacin, along with isoniazid and rifampicin for 4 months with pyrazinamide for first 2 months (G or M) or isoniazid and rifampicin for 6 months with ethambutol and pyrazinamide for first 2 months (C). All regimens were administered thrice-weekly. Clinical and bacteriological assessments were done monthly during treatment and for 24 months post-treatment. The Data and Safety Monitoring Board recommended termination of the trial due to high TB recurrence rates in the G and M regimens.

Results

Of 416 patients in intent-to-treat analysis, 6 (5%) of 124, 2 (2%) of 110 and 2 (2%) of 137 patients with drug-susceptible TB in the G, M and C arms respectively had unfavorable response at the end of treatment; during the next 24 months, 17 (15%) of 115, 11 (11%) of 104 and 8 (6%) of 132 patients respectively, had TB recurrence. Of 38 drug-resistant patients 1 of 8 and 3 of 26 in the G and C arms respectively had unfavourable response at the end of treatment; and TB recurrence occurred in 2 of 7 and 2 of 23 patients, respectively. The differences in TB recurrence rates between the G and C arms was statistically significant (p = 0.02). Gastro-intestinal symptoms occurred in 23%, 22% and 9% of patients in the G, M and C arms respectively, but most reactions were mild and manageable with symptomatic measures; 1% required regimen modification.

Conclusions

4-month thrice-weekly regimens of gatifloxacin or moxifloxacin with isoniazid, rifampicin and pyrazinamide, were inferior to standard 6-month treatment, in patients with newly diagnosed sputum positive pulmonary TB.

Trial Registration

Clinical Trials Registry of India CTRI/2012/10/003060  相似文献   

6.

Background

The World Health Organization has endorsed the Xpert MTB/RIF assay for investigation of patients suspected of having tuberculosis (TB). However, its utility for routine TB screening and detection of rifampicin resistance among HIV-infected patients with advanced immunodeficiency enrolling in antiretroviral therapy (ART) services is unknown.

Methods and Findings

Consecutive adult HIV-infected patients with no current TB diagnosis enrolling in an ART clinic in a South African township were recruited regardless of symptoms. They were clinically characterised and invited to provide two sputum samples at a single visit. The accuracy of the Xpert MTB/RIF assay for diagnosing TB and drug resistance was assessed in comparison with other tests, including fluorescence smear microscopy and automated liquid culture (gold standard) and drug susceptibility testing. Of 515 patients enrolled, 468 patients (median CD4 cell count, 171 cells/µl; interquartile range, 102–236) produced at least one sputum sample, yielding complete sets of results from 839 samples. Mycobacterium tuberculosis was cultured from 81 patients (TB prevalence, 17.3%). The overall sensitivity of the Xpert MTB/RIF assay for culture-positive TB was 73.3% (specificity, 99.2%) compared to 28.0% (specificity, 100%) using smear microscopy. All smear-positive, culture-positive disease was detected by Xpert MTB/RIF from a single sample (sensitivity, 100%), whereas the sensitivity for smear-negative, culture-positive TB was 43.4% from one sputum sample and 62.3% from two samples. Xpert correctly identified rifampicin resistance in all four cases of multidrug-resistant TB but incorrectly identified resistance in three other patients whose disease was confirmed to be drug sensitive by gene sequencing (specificity, 94.1%; positive predictive value, 57%).

Conclusions

In this population of individuals at high risk of TB, intensive screening using the Xpert MTB/RIF assay increased case detection by 45% compared with smear microscopy, strongly supporting replacement of microscopy for this indication. However, despite the ability of the assay to rapidly detect rifampicin-resistant disease, the specificity for drug-resistant TB was sub-optimal. Please see later in the article for the Editors'' Summary  相似文献   

7.

Background

Surveillance and effective management of drug resistance is important to sustaining tuberculosis (TB) control efforts. We aimed to determine resistance rates to first line anti tuberculosis drugs and to describe factors associated with the resistance to any of the first line anti tuberculosis drugs in Dar es Salaam Tanzania.

Materials

Newly diagnosed, TB patients with neither history of tuberculosis treatment nor isoniazid prophylaxis were included into the study. Sputum specimens were cultured on either mycobacteria growth indicator tube 960 (MGIT 960) or Lowenstein Jenstein (LJ) medium supplemented with either glycerol (GLJ) or pyruvate (PLJ). Drug susceptibility for isoniazid, rifampicin, streptomycin and ethambutol was determined by either Lowenstein–Jensen (LJ) medium or mycobacteria growth indicator tube 960 (MGIT 960).

Results

A total of 933 newly diagnosed TB patients, were included into the study. Multi drug resistance (MDR) tuberculosis was detected among 2 (0.2%) patients. Resistance to any of the four tested drugs was detected among 54 (5.8%) patients. Mono-resistance to isoniazid, rifampicin, streptomycin and ethambutol were 21(2.3%), 3 (0.3%), 13 (1.4%), 9 (1.0%) respectively.

Conclusion

Primary resistance to first line anti tuberculosis drugs is still low in this setting. Continued vigilance including periodic national surveillance of anti-tuberculosis resistance is recommended.  相似文献   

8.

Background

Although multidrug-resistant tuberculosis (MDR-TB) is emerging as a significant threat to tuberculosis control in high HIV prevalence countries such as South Africa, limited data is available on the burden of drug resistant tuberculosis and any association with HIV in such settings. We conducted a community-based representative survey to assess the MDR-TB burden in Khayelitsha, an urban township in South Africa with high HIV and TB prevalence.

Methodology/Principal Findings

A cross-sectional survey was conducted among adult clinic attendees suspected for pulmonary tuberculosis in two large primary care clinics, together constituting 50% of the tuberculosis burden in Khayelitsha. Drug susceptibility testing (DST) for isoniazid and rifampicin was conducted using a line probe assay on positive sputum cultures, and with culture-based DST for first and second-line drugs. Between May and November 2008, culture positive pulmonary tuberculosis was diagnosed in 271 new and 264 previously treated tuberculosis suspects (sample enriched with previously treated cases). Among those with known HIV status, 55% and 71% were HIV infected respectively. MDR-TB was diagnosed in 3.3% and 7.7% of new and previously treated cases. These figures equate to an estimated case notification rate for MDR-TB of 51/100,000/year, with new cases constituting 55% of the estimated MDR-TB burden. HIV infection was not significantly associated with rifampicin resistance in multivariate analyses.

Conclusions/Significance

There is an extremely high burden of MDR-TB in this setting, most likely representing ongoing transmission. These data highlight the need to diagnose drug resistance among all TB cases, and for innovative models of case detection and treatment for MDR-TB, in order to interrupt transmission and control this emerging epidemic.  相似文献   

9.

Background

The rise in tuberculosis (TB) incidence following generalized HIV epidemics can overwhelm TB control programmes in resource-limited settings, sometimes accompanied by rising rates of drug resistance. This has led to claims that DOTS-based TB control has failed in such settings. However, few studies have described the effect of a sustained and well-supported DOTS programme on TB incidence and drug resistance over a long period. We present long-term trends in incidence and drug resistance in rural Malawi.

Methods

Karonga District in northern Malawi has an adult HIV prevalence of ∼10%. A research group, the Karonga Prevention Study, collaborates with the National Tuberculosis Programme to support core TB control activities. Bacteriological, demographic and clinical (including HIV status) information from all patients starting TB treatment in the District have been recorded since 1988. During that period isolates from each culture-positive TB patient were exported for drug sensitivity testing. Antiretroviral therapy (ART) has been widely available since 2005.

Results

Incidence of new smear-positive adult TB peaked at 124/100,000/year in the mid-90s, but has since fallen to 87/100,000/year. Drug sensitivity information was available for 95% (3132/3307) of all culture-positive cases. Initial resistance to isoniazid was around 6% with no evidence of an increase. Fewer than 1% of episodes involved a multi-drug resistant strain.

Discussion

In this setting with a generalised HIV epidemic and medium TB burden, a well-supported DOTS programme enhanced by routine culture and drug sensitivity testing may well have reduced TB incidence and maintained drug resistance at low levels.  相似文献   

10.

Setting

The dual epidemics of HIV-TB including MDR-TB are major contributors to high morbidity and mortality rates in South Africa. Rifampicin (RIF) resistance is regarded as a proxy for MDR-TB. Currently available molecular assays have the advantage of rapidly detecting resistant strains of MTB, but the GeneXpert does not detect isoniazid (INH) resistance and the GenoTypeMTBDRplus(LPA) assay may underestimate resistance to INH. Increasing proportions of rifampicin mono-resistance resistance (RMR) have recently been reported from South Africa and other countries.

Objective

This laboratory based study was conducted at NHLS TB Laboratory, Durban, which is the reference laboratory for culture and susceptibility testing in KwaZulu-Natal. We retrospectively determined, for the period 2007 to 2009, the proportion of RMR amongst Mycobacterium tuberculosis (MTB) isolates, that were tested for both RIF and INH, using the gold standard of culture based phenotypic drug susceptibility testing (DST). Gender and age were also analysed to identify possible risk factors for RMR.

Design

MTB culture positive sputum samples from 16,748 patients were analysed for susceptibility to RIF and INH during the period 2007 to 2009. RMR was defined as MTB resistant to RIF and susceptible to INH. For the purposes of this study, only the first specimen from each patient was included in the analysis.

Results

RMR was observed throughout the study period. The proportion of RMR varied from a low of 7.3% to a high of 10.0% [overall 8.8%]. Overall, males had a 42% increased odds of being RMR as compared to females. In comparison to the 50 plus age group, RMR was 37% more likely to occur in the 25–29 year age category.

Conclusion

We report higher proportions of RMR ranging from 7.3% to 10% [overall 8.8%] than previously reported in the literature. To avoid misclassification of RMR, detected by the GeneXpert, as MDR-TB, culture based phenotypic DST must be performed on a second specimen, as recommended by the SA NDOH TB guidelines as well as WHO. We suggest that two sputum samples should be obtained at the first visit. The second sputum sample should be stored at 4°C. The latter sample is then readily available for performing additional DST (phenotypic or genotypic) for 2nd lines drugs, resulting in a decreased waiting period for DST results to become available.  相似文献   

11.

Background

Early and effective detection of Mycobacterium tuberculosis (MTB), particularly in smear-negative tuberculosis (TB), is a priority for global TB control. Loop-mediated isothermal amplification with a procedure for ultra rapid DNA extraction (PURE-LAMP) can detect TB in sputum samples rapidly and with high sensitivity and specificity. However, the PURE-LAMP test has not been effectively evaluated, especially in resource-limited laboratories. In this study, we evaluated the performance of the PURE-LAMP test for TB detection in TB suspects from two county-level TB dispensaries in China.

Methodology/Principal Findings

From April 2011 to February 2012, patients with suspected TB were continuously enrolled from two county-level TB laboratories in China. Three sputum samples (spot, night, and morning sputum) were collected from each recruited patient. Detection of MTB by PURE-LAMP was compared to a reference standard L-J culture. The results showed that the sensitivity of the PURE-LAMP test based on spot sputum for MTB detection was 70.67%, while the sensitivity of the PURE-LAMP test based on spot sputum for MTB detection in smear positive and culture positive patients and smear negative and culture positive patients was 92.12% and 53.81%, respectively. The specificity of PURE-LAMP based on spot sputum for MTB detection was 98.32%. The sensitivity and specificity of the PURE-LAMP test based on three sputa combination for MTB detection was 88.80% and 96.86%, respectively. The results also showed that the PURE-LAMP test had a significantly lower contamination rate than did solid culture.

Conclusions/Significance

The study suggested that, in peripheral-level TB laboratories in China, the PURE-LAMP test showed high sensitivity and specificity for TB detection in TB suspects, making it a more effective, rapid, and safe method worthy of broader use in the future.  相似文献   

12.

Background

There is limited available data on the strain diversity of M tuberculosis in Peru, though there may be interesting lessons to learn from a setting where multidrug resistant TB has emerged as a major problem despite an apparently well-functioning DOTS control programme.

Methods

Spoligotyping was undertaken on 794 strains of M tuberculosis collected between 1999 and 2005 from 553 community-based patients and 241 hospital-based HIV co-infected patients with pulmonary tuberculosis in Lima, Peru. Phylogenetic and epidemiologic analyses permitted identification of clusters and exploration of spoligotype associations with drug resistance.

Results

Mean patient age was 31.9 years, 63% were male and 30.4% were known to be HIV+. Rifampicin mono-resistance, isoniazid mono-resistance and multidrug resistance (MDR) were identified in 4.7%, 8.7% and 17.3% of strains respectively. Of 794 strains from 794 patients there were 149 different spoligotypes. Of these there were 27 strains (3.4%) with novel, unique orphan spoligotypes. 498 strains (62.7%) were clustered in the nine most common spoligotypes: 16.4% SIT 50 (clade H3), 12.3% SIT 53 (clade T1), 8.3% SIT 33 (LAM3), 7.4% SIT 42 (LAM9), 5.5% SIT 1 (Beijing), 3.9% SIT 47 (H1), 3.0% SIT 222 (clade unknown), 3.0% SIT1355 (LAM), and 2.8% SIT 92 (X3). Amongst HIV-negative community-based TB patients no associations were seen between drug resistance and specific spoligotypes; in contrast HIV-associated MDRTB, but not isoniazid or rifampicin mono-resistance, was associated with SIT42 and SIT53 strains.

Conclusion

Two spoligotypes were associated with MDR particularly amongst patients with HIV. The MDR-HIV association was significantly reduced after controlling for SIT42 and SIT53 status; residual confounding may explain the remaining apparent association. These data are suggestive of a prolonged, clonal, hospital-based outbreak of MDR disease amongst HIV patients but do not support a hypothesis of strain-specific propensity for the acquisition of resistance-conferring mutations.  相似文献   

13.

Background

The WHO has recommended the implementation of rapid diagnostic tests to detect and help combat M/XDR tuberculosis (TB). There are limited data on the performance and impact of these tests in field settings.

Methods

The performance of the commercially available Genotype MTBDRplus molecular assay was compared to conventional methods including AFB smear, culture and drug susceptibility testing (DST) using both an absolute concentration method on Löwenstein-Jensen media and broth-based method using the MGIT 960 system. Sputum specimens were obtained from TB suspects in the country of Georgia who received care through the National TB Program.

Results

Among 500 AFB smear-positive sputum specimens, 458 (91.6%) had both a positive sputum culture for Mycobacterium tuberculosis and a valid MTBDRplus assay result. The MTBDRplus assay detected isoniazid (INH) resistance directly from the sputum specimen in 159 (89.8%) of 177 specimens and MDR-TB in 109 (95.6%) of 114 specimens compared to conventional methods. There was high agreement between the MTBDRplus assay and conventional DST results in detecting MDR-TB (kappa = 0.95, p<0.01). The most prevalent INH resistance mutation was S315T (78%) in the katG codon and the most common rifampicin resistance mutation was S531L (68%) in the rpoB codon. Among 13 specimens from TB suspects with negative sputum cultures, 7 had a positive MTBDRplus assay (3 with MDR-TB). The time to detection of MDR-TB was significantly less using the MTBDRplus assay (4.2 days) compared to the use of standard phenotypic tests (67.3 days with solid media and 21.6 days with broth-based media).

Conclusions

Compared to conventional methods, the MTBDRplus assay had high accuracy and significantly reduced time to detection of MDR-TB in an area with high MDR-TB prevalence. The use of rapid molecular diagnostic tests for TB and drug resistance should increase the proportion of patients promptly placed on appropriate therapy.  相似文献   

14.

Background

Worldwide highest number of new pulmonary tuberculosis (PTB) cases, was reported from India in 2012. Adverse treatment outcomes and emergence of drug resistance further complicated the prevailing scenario owing to increased duration, cost and toxicity associated with the treatment of drug-resistant cases. Hence to reinforce India’s fight against TB, identification of the correlates of adverse treatment outcomes and drug resistance, seemed critical.

Methods

To estimate the associations between diagnostic findings, patient types (based on treatment outcomes), drug resistance and socio-demographic characteristics of PTB patients, a cross-sectional study was conducted in two tertiary-care hospitals in Kolkata between April 2010 and March 2013. Altogether, 350 consenting Mycobacterium tuberculosis sputum-culture positive PTB patients were interviewed about their socio-demographic background, evaluated regarding their X-ray findings (minimal/moderately advanced/far advanced/cavities), sputum-smear positivity, and treatment history/outcomes (new/defaulter/relapse/treatment-failure cases). Multiple-allele-specific polymerase chain reaction (MAS-PCR) was conducted to diagnose drug resistance.

Results

Among all participants, 31.43% were newly diagnosed, while 44%, 15.43% and 9.14% patients fell into the categories of relapsed, defaulters and treatment-failures, respectively. 12.29% were multi-drug-resistant (MDR: resistant to at least isoniazid and rifampicin), 57.71% had non-MDR two-drug resistance and 12% had single-drug resistance. Subjects with higher BMI had lower odds of being a relapse/defaulter/treatment failure case while females were more likely to be defaulters and older age-groups had more relapse. Elderly, females, unmarried, those with low BMI and higher grade of sputum-smear positivity were more likely to have advanced X-ray features. Higher grade of sputum-smear positivity and advanced chest X-ray findings were associated with relapse/treatment-failures. Elderly, unmarried, relapse/defaulter/treatment-failure cases had higher odds and those with higher BMI and moderately/far advanced X-ray findings had lower odds of having MDR/non-MDR two-drug resistant PTB.

Conclusion

Targeted intervention and appropriate counseling are needed urgently to prevent adverse treatment outcomes and development of drug resistance among PTB patients in Kolkata.  相似文献   

15.

Background

Fluorescence microscopy (FM) has not been implemented widely in TB endemic settings and little evaluation has been done in HIV-infected patients. We evaluated diagnostic performance, time and costs of FM with light-emitting diodes technology (LED-FM), compared with conventional (Zieh-Neelsen) microscopy in a hospital in Indonesia which acts as referral centre for HIV-infected patients.

Method

We included pulmonary tuberculosis suspects from the outpatient and HIV clinic. Direct and concentrated sputum smears were examined using LED-FM and ZN microscopy by two technicians who were blinded for the HIV-status and the result of the comparative test. Mean reading time per slide was recorded and cost of each slide was calculated. Mycobacteria culture served as the reference standard.

Results

Among 404 tuberculosis suspects from the outpatient clinic and 256 from the HIV clinic, mycobacteria culture was positive in 12.6% and 27%, respectively. The optimal sensitivity of LED-FM was achieved by using a threshold of ≥2 AFB/length. LED-FM had a higher sensitivity (75.5% vs. 54.9%, P<0.01) but lower specificity (90.0% vs 96.6%, P<0.01) compared to ZN microscopy. HIV was associated with a lower sensitivity but similar specificity. The average reading time using LED-FM was significantly shorter (2.23±0.78 vs 5.82±1.60 minutes, P<0.01), while costs per slide were similar.

Conclusion

High sensitivity of LED-FM combined with shorter reading time of sputum smear slides make this method a potential alternative to ZN microscopy. Additional data on specificity are needed for effective implementation of this technique in high burden TB laboratories.  相似文献   

16.

Introduction

Rapid tests for rifampicin resistance may be useful for identifying isolates at high risk of drug resistance, including multidrug-resistant TB (MDR-TB). However, choice of diagnostic test and prevalence of rifampicin resistance may both impact a diagnostic strategy for identifying drug resistant-TB. We performed a systematic review to evaluate the performance of WHO-endorsed rapid tests for rifampicin resistance detection.

Methods

We searched MEDLINE, Embase and the Cochrane Library through January 1, 2012. For each rapid test, we determined pooled sensitivity and specificity estimates using a hierarchical random effects model. Predictive values of the tests were determined at different prevalence rates of rifampicin resistance and MDR-TB.

Results

We identified 60 publications involving six different tests (INNO-LiPA Rif. TB assay, Genotype MTBDR assay, Genotype MTBDRplus assay, Colorimetric Redox Indicator (CRI) assay, Nitrate Reductase Assay (NRA) and MODS tests): for all tests, negative predictive values were high when rifampicin resistance prevalence was ≤ 30%. However, positive predictive values were considerably reduced for the INNO-LiPA Rif. TB assay, the MTBDRplus assay and MODS when rifampicin resistance prevalence was < 5%.

Limitations

In many studies, it was unclear whether patient selection or index test performance could have introduced bias. In addition, we were unable to evaluate critical concentration thresholds for the colorimetric tests.

Discussion

Rapid tests for rifampicin resistance alone cannot accurately predict rifampicin resistance or MDR-TB in areas with a low prevalence of rifampicin resistance. However, in areas with a high prevalence of rifampicin resistance and MDR-TB, these tests may be a valuable component of an MDR-TB management strategy.  相似文献   

17.

Setting

Public tuberculosis (TB) clinics in urban Morocco.

Objective

Explore risk factors for TB treatment default and develop a prediction tool. Assess consequences of default, specifically risk for transmission or development of drug resistance.

Design

Case-control study comparing patients who defaulted from TB treatment and patients who completed it using quantitative methods and open-ended questions. Results were interpreted in light of health professionals’ perspectives from a parallel study. A predictive model and simple tool to identify patients at high risk of default were developed. Sputum from cases with pulmonary TB was collected for smear and drug susceptibility testing.

Results

91 cases and 186 controls enrolled. Independent risk factors for default included current smoking, retreatment, work interference with adherence, daily directly observed therapy, side effects, quick symptom resolution, and not knowing one’s treatment duration. Age >50 years, never smoking, and having friends who knew one’s diagnosis were protective. A simple scoring tool incorporating these factors was 82.4% sensitive and 87.6% specific for predicting default in this population. Clinicians and patients described additional contributors to default and suggested locally-relevant intervention targets. Among 89 cases with pulmonary TB, 71% had sputum that was smear positive for TB. Drug resistance was rare.

Conclusion

The causes of default from TB treatment were explored through synthesis of qualitative and quantitative data from patients and health professionals. A scoring tool with high sensitivity and specificity to predict default was developed. Prospective evaluation of this tool coupled with targeted interventions based on our findings is warranted. Of note, the risk of TB transmission from patients who default treatment to others is likely to be high. The commonly-feared risk of drug resistance, though, may be low; a larger study is required to confirm these findings.  相似文献   

18.

Background

South Africa shows one of the highest global burdens of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). Since 2002, MDR-TB in South Africa has been treated by a standardized combination therapy, which until 2010 included ofloxacin, kanamycin, ethionamide, ethambutol and pyrazinamide. Since 2010, ethambutol has been replaced by cycloserine or terizidone. The effect of standardized treatment on the acquisition of XDR-TB is not currently known.

Methods

We genetically characterized a random sample of 4,667 patient isolates of drug-sensitive, MDR and XDR-TB cases collected from three South African provinces, namely, the Western Cape, Eastern Cape and KwaZulu-Natal. Drug resistance patterns of a subset of isolates were analyzed for the presence of commonly observed resistance mutations.

Results

Our analyses revealed a strong association between distinct strain genotypes and the emergence of XDR-TB in three neighbouring provinces of South Africa. Strains predominant in XDR-TB increased in proportion by more than 20-fold from drug-sensitive to XDR-TB and accounted for up to 95% of the XDR-TB cases. A high degree of clustering for drug resistance mutation patterns was detected. For example, the largest cluster of XDR-TB associated strains in the Eastern Cape, affecting more than 40% of all MDR patients in this province, harboured identical mutations concurrently conferring resistance to isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin, ethionamide, kanamycin, amikacin and capreomycin.

Conclusions

XDR-TB associated genotypes in South Africa probably were programmatically selected as a result of the standard treatment regimen being ineffective in preventing their transmission. Our findings call for an immediate adaptation of standard treatment regimens for M/XDR-TB in South Africa.  相似文献   

19.

Introduction

Limited data exist on use of the microscopic-observation drug-susceptibility (MODS) assay among persons suspected of MDR-TB living in high HIV-prevalence settings.

Methods

We retrospectively reviewed available clinical and drug susceptibility data for drug-resistant TB suspects referred for culture and drug-susceptibility testing between April 1, 2011 and March 1, 2012. The diagnostic accuracy of MODS was estimated against a reference standard including Löwenstein-Jensen (LJ) media and manual liquid (BACTEC MGIT) culture. The accuracy of MODS drug-susceptibility testing (DST) was assessed against a reference standard absolute concentration method.

Results

One hundred thirty-eight sputum samples were collected from 99 drug-resistant TB suspects; in addition, six previously cultured MDR isolates were included for assessment of DST accuracy. Among persons with known HIV infection status, 39/59 (66%) were HIV-infected. Eighty-six percent of patients had a history of prior TB treatment, and 80% of individuals were on antituberculous treatment at the time of sample collection. M. tuberculosis was identified by reference standard culture among 34/98 (35%) MDR-TB suspects. Overall MODS sensitivity for M. tuberculosis detection was 85% (95% CI, 69–95%) and specificity was 93% (95% CI, 84–98%); diagnostic accuracy did not significantly differ by HIV infection status. Median time to positivity was significantly shorter for MODS (7 days; IQR 7–15 days) than MGIT (12 days; IQR 6–16 days) or LJ (28 days; IQR 21–35 days; p<0.001). Of 33 specimens with concurrent DST results, sensitivity of the MODS assay for detection of resistance to isoniazid, rifampin, and MDR-TB was 88% (95% CI, 68–97%), 96% (95% CI, 79–100%), and 91% (95% CI, 72–99%), respectively; specificity was 89% (95% CI, 52–100%), 89% (95% CI, 52–100%), and 90% (95% CI, 56–100%), respectively.

Conclusion

In a high HIV-prevalence setting, MODS diagnosed TB and drug-resistant TB with high sensitivity and shorter turnaround time compared with standard culture and DST methods.  相似文献   

20.

Background

Newer molecular diagnostics have brought paradigm shift in early diagnosis of tuberculosis [TB]. WHO recommended use of GeneXpert MTB/RIF [Xpert] for Extra-pulmonary [EP] TB; critics have since questioned its efficiency.

Methods

The present study was designed to assess the performance of GeneXpert in 761 extra-pulmonary and 384 pulmonary specimens from patients clinically suspected of TB and compare with Phenotypic, Genotypic and Composite reference standards [CRS].

Results

Comparison of GeneXpert results to CRS, demonstrated sensitivity of 100% and 90.68%, specificity of 100% and 99.62% for pulmonary and extra-pulmonary samples. On comparison with culture, sensitivity for Rifampicin [Rif] resistance detection was 87.5% and 81.82% respectively, while specificity was 100% for both pulmonary and extra-pulmonary TB. On comparison to sequencing of rpoB gene [Rif resistance determining region, RRDR], sensitivity was respectively 93.33% and 90% while specificity was 100% in both pulmonary and extra-pulmonary TB. GeneXpert assay missed 533CCG mutation in one sputum and dual mutation [517 & 519] in one pus sample, detected by sequencing. Sequencing picked dual mutation [529, 530] in a sputum sample sensitive to Rif, demonstrating, not all RRDR mutations lead to resistance.

Conclusions

Current study reports observations in a patient care setting in a high burden region, from a large collection of pulmonary and extra-pulmonary samples and puts to rest questions regarding sensitivity, specificity, detection of infrequent mutations and mutations responsible for low-level Rif resistance by GeneXpert. Improvements in the assay could offer further improvement in sensitivity of detection in different patient samples; nevertheless it may be difficult to improve sensitivity of Rif resistance detection if only one gene is targeted. Assay specificity was high both for TB detection and Rif resistance detection. Despite a few misses, the assay offers major boost to early diagnosis of TB and MDR-TB, in difficult to diagnose pauci-bacillary TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号