首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of “ancestral sequences” inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a “best guess” amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.  相似文献   

2.
3.
4.
Phylogenetic relationships, divergence times, and patterns of biogeographic descent among primate species are both complex and contentious. Here, we generate a robust molecular phylogeny for 70 primate genera and 367 primate species based on a concatenation of 69 nuclear gene segments and ten mitochondrial gene sequences, most of which were extracted from GenBank. Relaxed clock analyses of divergence times with 14 fossil-calibrated nodes suggest that living Primates last shared a common ancestor 71–63 Ma, and that divergences within both Strepsirrhini and Haplorhini are entirely post-Cretaceous. These results are consistent with the hypothesis that the Cretaceous-Paleogene mass extinction of non-avian dinosaurs played an important role in the diversification of placental mammals. Previous queries into primate historical biogeography have suggested Africa, Asia, Europe, or North America as the ancestral area of crown primates, but were based on methods that were coopted from phylogeny reconstruction. By contrast, we analyzed our molecular phylogeny with two methods that were developed explicitly for ancestral area reconstruction, and find support for the hypothesis that the most recent common ancestor of living Primates resided in Asia. Analyses of primate macroevolutionary dynamics provide support for a diversification rate increase in the late Miocene, possibly in response to elevated global mean temperatures, and are consistent with the fossil record. By contrast, diversification analyses failed to detect evidence for rate-shift changes near the Eocene-Oligocene boundary even though the fossil record provides clear evidence for a major turnover event (“Grande Coupure”) at this time. Our results highlight the power and limitations of inferring diversification dynamics from molecular phylogenies, as well as the sensitivity of diversification analyses to different species concepts.  相似文献   

5.
Several lines of evidence such as the basal location of thermophilic lineages in large-scale phylogenetic trees and the ancestral sequence reconstruction of single enzymes or large protein concatenations support the conclusion that the ancestors of the bacterial and archaeal domains were thermophilic organisms which were adapted to hot environments during the early stages of the Earth. A parsimonious reasoning would therefore suggest that the last universal common ancestor (LUCA) was also thermophilic. Various authors have used branch-wise non-homogeneous evolutionary models that better capture the variation of molecular compositions among lineages to accurately reconstruct the ancestral G + C contents of ribosomal RNAs and the ancestral amino acid composition of highly conserved proteins. They confirmed the thermophilic nature of the ancestors of Bacteria and Archaea but concluded that LUCA, their last common ancestor, was a mesophilic organism having a moderate optimal growth temperature. In this letter, we investigate the unknown nature of the phylogenetic signal that informs ancestral sequence reconstruction to support this non-parsimonious scenario. We find that rate variation across sites of molecular sequences provides information at different time scales by recording the oldest adaptation to temperature in slow-evolving regions and subsequent adaptations in fast-evolving ones.  相似文献   

6.
7.
The rapid mutation of human immunodeficiency virus-type 1 (HIV-1) and the limited characterization of the composition and incidence of the variant population are major obstacles to the development of an effective HIV-1 vaccine. This issue was addressed by a comprehensive analysis of over 58,000 clade B HIV-1 protein sequences reported over at least 26 years. The sequences were aligned and the 2,874 overlapping nonamer amino acid positions of the viral proteome, each a possible core binding domain for human leukocyte antigen molecules and T-cell receptors, were quantitatively analyzed for four patterns of sequence motifs: (1) “index”, the most prevalent sequence; (2) “major” variant, the most common variant sequence; (3) “minor” variants, multiple different sequences, each with an incidence less than that of the major variant; and (4) “unique” variants, each observed only once in the alignment. The collective incidence of the major, minor, and unique variants at each nonamer position represented the total variant population for the position. Positions with more than 50% total variants contained correspondingly reduced incidences of index and major variant sequences and increased minor and unique variants. Highly diverse positions, with 80 to 98% variant nonamer sequences, were present in each protein, including 5% of Gag, and 27% of Env and Nef, each. The multitude of different variant nonamer sequences (i.e. nonatypes; up to 68%) at the highly diverse positions, represented by the major, multiple minor, and multiple unique variants likely supported variants function both in immune escape and as altered peptide ligands with deleterious T-cell responses. The patterns of mutational change were consistent with the sequences of individual HXB2 and C1P viruses and can be considered applicable to all HIV-1 viruses. This characterization of HIV-1 protein mutation provides a foundation for the design of peptide-based vaccines and therapeutics.  相似文献   

8.
9.
While Darwin pictured organismal evolution as "descent with modification" more than 150 years ago, a detailed reconstruction of the basic evolutionary transitions at the molecular level is only emerging now. In particular, the evolution of today's protein structures and their concurrent functions has remained largely mysterious, as the destruction of these structures by mutation seems far easier than their construction. While the accumulation of genomic and structural data has indicated that proteins are related via common ancestors, naturally occurring protein structures are often considered to be evolutionarily robust, thus leaving open the question of how protein structures can be remodelled while selective pressure forces them to function. New information on the proteome, however, increasingly explains the nature of local and global conformational diversity in protein evolution, which allows the acquisition of novel functions via molecular transition forms containing ancestral and novel structures in dynamic equilibrium. Such structural plasticity may permit the evolution of new protein folds and help account for both the origins of new biological functions and the nature of molecular defects.  相似文献   

10.
11.
12.
Reconstructing the evolutionary history of protein sequences will provide a better understanding of divergence mechanisms of protein superfamilies and their functions. Long-term protein evolution often includes dynamic changes such as insertion, deletion, and domain shuffling. Such dynamic changes make reconstructing protein sequence evolution difficult and affect the accuracy of molecular evolutionary methods, such as multiple alignments and phylogenetic methods. Unfortunately, currently available simulation methods are not sufficiently flexible and do not allow biologically realistic dynamic protein sequence evolution. We introduce a new method, indel-Seq-Gen (iSG), that can simulate realistic evolutionary processes of protein sequences with insertions and deletions (indels). Unlike other simulation methods, iSG allows the user to simulate multiple subsequences according to different evolutionary parameters, which is necessary for generating realistic protein families with multiple domains. iSG tracks all evolutionary events including indels and outputs the "true" multiple alignment of the simulated sequences. iSG can also generate a larger sequence space by allowing the use of multiple related root sequences. With all these functions, iSG can be used to test the accuracy of, for example, multiple alignment methods, phylogenetic methods, evolutionary hypotheses, ancestral protein reconstruction methods, and protein family classification methods. We empirically evaluated the performance of iSG against currently available methods by simulating the evolution of the G protein-coupled receptor and lipocalin protein families. We examined their true multiple alignments, reconstruction of the transmembrane regions and beta-strands, and the results of similarity search against a protein database using the simulated sequences. We also presented an example of using iSG for examining how phylogenetic reconstruction is affected by high indel rates.  相似文献   

13.
The reconstruction and synthesis of ancestral RNAs is a feasible goal for paleogenetics. This will require new bioinformatics methods, including a robust statistical framework for reconstructing histories of substitutions, indels and structural changes. We describe a “transducer composition” algorithm for extending pairwise probabilistic models of RNA structural evolution to models of multiple sequences related by a phylogenetic tree. This algorithm draws on formal models of computational linguistics as well as the 1985 protosequence algorithm of David Sankoff. The output of the composition algorithm is a multiple-sequence stochastic context-free grammar. We describe dynamic programming algorithms, which are robust to null cycles and empty bifurcations, for parsing this grammar. Example applications include structural alignment of non-coding RNAs, propagation of structural information from an experimentally-characterized sequence to its homologs, and inference of the ancestral structure of a set of diverged RNAs. We implemented the above algorithms for a simple model of pairwise RNA structural evolution; in particular, the algorithms for maximum likelihood (ML) alignment of three known RNA structures and a known phylogeny and inference of the common ancestral structure. We compared this ML algorithm to a variety of related, but simpler, techniques, including ML alignment algorithms for simpler models that omitted various aspects of the full model and also a posterior-decoding alignment algorithm for one of the simpler models. In our tests, incorporation of basepair structure was the most important factor for accurate alignment inference; appropriate use of posterior-decoding was next; and fine details of the model were least important. Posterior-decoding heuristics can be substantially faster than exact phylogenetic inference, so this motivates the use of sum-over-pairs heuristics where possible (and approximate sum-over-pairs). For more exact probabilistic inference, we discuss the use of transducer composition for ML (or MCMC) inference on phylogenies, including possible ways to make the core operations tractable.  相似文献   

14.
SH3 and OB are the simplest, oldest, and most common protein domains within the translation system. SH3 and OB domains are β-barrels that are structurally similar but are topologically distinct. To transform an OB domain to a SH3 domain, β-strands must be permuted in a multistep and evolutionarily implausible mechanism. Here, we explored relationships between SH3 and OB domains of ribosomal proteins, initiation, and elongation factors using a combined sequence- and structure-based approach. We detect a common core of SH3 and OB domains, as a region of significant structure and sequence similarity. The common core contains four β-strands and a loop, but omits the fifth β-strand, which is variable and is absent from some OB and SH3 domain proteins. The structure of the common core immediately suggests a simple permutation mechanism for interconversion between SH3 and OB domains, which appear to share an ancestor. The OB domain was formed by duplication and adaptation of the SH3 domain core, or vice versa, in a simple and probable transformation. By employing the folding algorithm AlphaFold2, we demonstrated that an ancestral reconstruction of a permuted SH3 sequence folds into an OB structure, and an ancestral reconstruction of a permuted OB sequence folds into a SH3 structure. The tandem SH3 and OB domains in the universal ribosomal protein uL2 share a common ancestor, suggesting that the divergence of these two domains occurred before the last universal common ancestor.  相似文献   

15.
The long-term evolutionary impacts of whole-genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologs) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnolog sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent “explosion” of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnolog divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial “wave” of rediploidization in the late Cretaceous (85–106 Ma). This was followed by a period of relative genomic stasis lasting 17–39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnolog divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events.  相似文献   

16.
The postsynaptic density extends across the postsynaptic dendritic spine with discs large (DLG) as the most abundant scaffolding protein. DLG dynamically alters the structure of the postsynaptic density, thus controlling the function and distribution of specific receptors at the synapse. DLG contains three PDZ domains and one important interaction governing postsynaptic architecture is that between the PDZ3 domain from DLG and a protein called cysteine-rich interactor of PDZ3 (CRIPT). However, little is known regarding functional evolution of the PDZ3:CRIPT interaction. Here, we subjected PDZ3 and CRIPT to ancestral sequence reconstruction, resurrection, and biophysical experiments. We show that the PDZ3:CRIPT interaction is an ancient interaction, which was likely present in the last common ancestor of Eukaryotes, and that high affinity is maintained in most extant animal phyla. However, affinity is low in nematodes and insects, raising questions about the physiological function of the interaction in species from these animal groups. Our findings demonstrate how an apparently established protein–protein interaction involved in cellular scaffolding in bilaterians can suddenly be subject to dynamic evolution including possible loss of function.  相似文献   

17.
Most common methods for inferring transposable element (TE) evolutionary relationships are based on dividing TEs into subfamilies using shared diagnostic nucleotides. Although originally justified based on the “master gene” model of TE evolution, computational and experimental work indicates that many of the subfamilies generated by these methods contain multiple source elements. This implies that subfamily-based methods give an incomplete picture of TE relationships. Studies on selection, functional exaptation, and predictions of horizontal transfer may all be affected. Here, we develop a Bayesian method for inferring TE ancestry that gives the probability that each sequence was replicative, its frequency of replication, and the probability that each extant TE sequence came from each possible ancestral sequence. Applying our method to 986 members of the newly-discovered LAVA family of TEs, we show that there were far more source elements in the history of LAVA expansion than subfamilies identified using the CoSeg subfamily-classification program. We also identify multiple replicative elements in the AluSc subfamily in humans. Our results strongly indicate that a reassessment of subfamily structures is necessary to obtain accurate estimates of mutation processes, phylogenetic relationships and historical times of activity.  相似文献   

18.
Reconstructing the ancestral characteristics of species is a major goal in evolutionary and comparative biology. Unfortunately, fossils are not always available and sufficiently informative, and phylogenetic methods based on models of character evolution can be unsatisfactory. Genomic data offer a new opportunity to estimate ancestral character states, through (i) the correlation between DNA evolutionary processes and species life‐history traits and (ii) available reliable methods for ancestral sequence inference. Here, we assess the relevance of mitochondrial DNA – the most popular molecular marker in animals – as a predictor of ancestral life‐history traits in mammals, using the order of Cetartiodactyla as a benchmark. Using the complete set of 13 mitochondrial protein‐coding genes, we show that the lineage‐specific nonsynonymous over synonymous substitution rate ratio (dN/dS) is closely correlated with the species body mass, longevity and age of sexual maturity in Cetartiodactyla and can be used as a marker of ancestral traits provided that the noise introduced by short branches is appropriately dealt with. Based on ancestral dN/dS estimates, we predict that the first cetartiodactyls were relatively small animals (around 20 kg). This finding is in accordance with Cope's rule and the fossil record but could not be recovered via continuous character evolution methods.  相似文献   

19.
20.
Intrinsically disordered regions have been associated with various cellular processes and are implicated in several human diseases, but their exact roles remain unclear. We previously defined two classes of conserved disordered regions in budding yeast, referred to as “flexible” and “constrained” conserved disorder. In flexible disorder, the property of disorder has been positionally conserved during evolution, whereas in constrained disorder, both the amino acid sequence and the property of disorder have been conserved. Here, we show that flexible and constrained disorder are widespread in the human proteome, and are particularly common in proteins with regulatory functions. Both classes of disordered sequences are highly enriched in regions of proteins that undergo tissue-specific (TS) alternative splicing (AS), but not in regions of proteins that undergo general (i.e., not tissue-regulated) AS. Flexible disorder is more highly enriched in TS alternative exons, whereas constrained disorder is more highly enriched in exons that flank TS alternative exons. These latter regions are also significantly more enriched in potential phosphosites and other short linear motifs associated with cell signaling. We further show that cancer driver mutations are significantly enriched in regions of proteins associated with TS and general AS. Collectively, our results point to distinct roles for TS alternative exons and flanking exons in the dynamic regulation of protein interaction networks in response to signaling activity, and they further suggest that alternatively spliced regions of proteins are often functionally altered by mutations responsible for cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号