首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular region of the thyrotropin receptor (TSHR) can be subdivided into the leucine-rich repeat domain (LRRD) and the hinge region. Both the LRRD and the hinge region interact with thyrotropin (TSH) or autoantibodies. Structural data for the TSHR LRRD were previously determined by crystallization (amino acids Glu(30)-Thr(257), 10 repeats), but the structure of the hinge region is still undefined. Of note, the amino acid sequence (Trp(258)-Tyr(279)) following the crystallized LRRD comprises a pattern typical for leucine-rich repeats with conserved hydrophobic side chains stabilizing the repeat fold. Moreover, functional data for amino acids between the LRRD and the transmembrane domain were fragmentary. We therefore investigated systematically these TSHR regions by mutagenesis to reveal insights into their functional contribution and potential structural features. We found that mutations of conserved hydrophobic residues between Thr(257) and Tyr(279) cause TSHR misfold, which supports a structural fold of this peptide, probably as an additional leucine-rich repeat. Furthermore, we identified several new mutations of hydrophilic amino acids in the entire hinge region leading to partial TSHR inactivation, indicating that these positions are important for intramolecular signal transduction. In summary, we provide new information regarding the structural features and functionalities of extracellular TSHR regions. Based on these insights and in context with previous results, we suggest an extracellular activation mechanism that supports an intramolecular agonistic unit as a central switch for activating effects at the extracellular region toward the serpentine domain.  相似文献   

2.
The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.  相似文献   

3.
The glycoprotein hormone receptor hinge region connects the leucine-rich and transmembrane domains. The prevalent concept is that the hinge does not play a significant role in ligand binding and signal transduction. Portions of the hinge are redundant and can be deleted by mutagenesis or are absent in certain species. A minimal hinge will be more amenable to future investigation of its structure and function. We, therefore, combined and progressively extended previous deletions (Delta) in the TSH receptor (TSHR) hinge region (residues 277-418). TSHRDelta287-366, Delta287-371, Delta287-376, and Delta287-384 progressively lost their response to TSH stimulation of cAMP generation in intact cells, consistent with a progressive loss of TSH binding. The longest deletion (TSHRDelta287-384), reducing the hinge region from 141 to 43 amino acids, totally lost both functions. Surprisingly, however, with deletions extending from residues 371-384, constitutive (ligand-independent) activity increased severalfold, reversing the suppressive (inverse agonist) effect of the TSHR extracellular domain. TSHR-activating point mutations I486F and I568T in the first and second extracellular loops (especially the former) had reduced activity on a background of TSHRDelta287-371. In summary, our data support the concept that the TSHR hinge contributes significantly to ligand binding affinity and signal transduction. Residues within the hinge, particularly between positions 371-384, appear involved in ectodomain inverse agonist activity. In addition, the hinge is necessary for functionality of activating mutations in the first and second extracellular loops. Rather than being an inert linker between the leucine-rich and transmembrane domains, the TSHR hinge is a signaling-specificity domain.  相似文献   

4.
The glycoprotein hormone receptor hinge region is the least conserved component and the most variable in size; the TSH receptor (TSHR) being the longest (152 amino acids; residues 261-412). The TSHR is also unique among the glycoprotein hormone receptor in undergoing in vivo intramolecular cleavage into disulfide-linked A- and B-subunits with removal of an intervening 'C-peptide' region. Experimentally, hinge region amino acids 317-366 (50 residues) can be deleted without alteration in receptor function. However, in vivo, more than 50 amino acids are deleted during TSHR intramolecular cleavage; furthermore, the boundaries of this deleted region are ragged and poorly defined. Studies to determine the extent to which hinge region deletions can be tolerated without affecting receptor function ('minimal hinge') are lacking. Using as a template the functionally normal TSHR with residues 317-366 deleted, progressive downstream extension of deletions revealed residue 371 to be the limit compatible with normal TSH binding and coupling with cAMP signal transduction. Based on the foregoing downstream limit, upstream deletion from residue 307 (307-371 deletion) was also tolerated without functional alteration, as was deletion of residues 303-366. Addressing a related issue regarding the functional role of the TSHR hinge region, we observed that downstream hinge residues 377-384 contribute to coupling ligand binding with cAMP signal transduction. In summary, we report the first evaluation of TSHR function in relation to proteolytic posttranslational hinge region modifications. Deletion of TSHR hinge amino acids 303-366 (64 residues) or 307-371 (65 residues) are the maximum hinge region deletions compatible with normal TSHR function.  相似文献   

5.
R Majumdar  RR Dighe 《PloS one》2012,7(7):e40291
The mechanism by which the hinge regions of glycoprotein hormone receptors couple hormone binding to activation of downstream effecters is not clearly understood. In the present study, agonistic (311.62) and antagonistic (311.87) monoclonal antibodies (MAbs) directed against the TSH receptor extracellular domain were used to elucidate role of the hinge region in receptor activation. MAb 311.62 which identifies the LRR/Cb-2 junction (aa 265-275), increased the affinity of TSHR for the hormone while concomitantly decreasing its efficacy, whereas MAb 311.87 recognizing LRR 7-9 (aa 201-259) acted as a non-competitive inhibitor of Thyroid stimulating hormone (TSH) binding. Binding of MAbs was sensitive to the conformational changes caused by the activating and inactivating mutations and exhibited differential effects on hormone binding and response of these mutants. By studying the effects of these MAbs on truncation and chimeric mutants of thyroid stimulating hormone receptor (TSHR), this study confirms the tethered inverse agonistic role played by the hinge region and maps the interactions between TSHR hinge region and exoloops responsible for maintenance of the receptor in its basal state. Mechanistic studies on the antibody-receptor interactions suggest that MAb 311.87 is an allosteric insurmountable antagonist and inhibits initiation of the hormone induced conformational changes in the hinge region, whereas MAb 311.62 acts as a partial agonist that recognizes a conformational epitope critical for coupling of hormone binding to receptor activation. The hinge region, probably in close proximity with the α-subunit in the hormone-receptor complex, acts as a tunable switch between hormone binding and receptor activation.  相似文献   

6.
Glycoprotein hormone receptors (GPHR) have a large extracellular domain (ECD) divided into the leucine rich repeat (LRR) domain for binding of the glycoprotein hormones and the hinge region (HinR), which connects the LRR domain with the transmembrane domain (TMD). Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR) can be replaced by those of the follitropin (FSHR) and lutropin receptor (LHCGR) without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities.  相似文献   

7.
Thyroid-stimulating hormone (TSH)-induced reduction in ligand binding affinity (negative cooperativity) requires TSH receptor (TSHR) homodimerization, the latter involving primarily the transmembrane domain (TMD) but with the extracellular domain (ECD) also contributing to this association. To test the role of the TMD in negative cooperativity, we studied the TSHR ECD tethered to the cell surface by a glycosylphosphatidylinositol (GPI) anchor that multimerizes despite the absence of the TMD. Using the infinite ligand dilution approach, we confirmed that TSH increased the rate of dissociation (k(off)) of prebound (125)I-TSH from CHO cells expressing the TSH holoreceptor. Such negative cooperativity did not occur with TSHR ECD-GPI-expressing cells. However, even in the absence of added TSH, (125)I-TSH dissociated much more rapidly from the TSHR ECD-GPI than from the TSH holoreceptor. This phenomenon, suggesting a lower TSH affinity for the former, was surprising because both the TSHR ECD and TSH holoreceptor contain the entire TSH-binding site, and the TSH binding affinities for both receptor forms should, theoretically, be identical. In ligand competition studies, we observed that the TSH binding affinity for the TSHR ECD-GPI was significantly lower than that for the TSH holoreceptor. Further evidence for a difference in ligand binding kinetics for the TSH holoreceptor and TSHR ECD-GPI was obtained upon comparison of the TSH K(d) values for these two receptor forms at 4 °C versus room temperature. Our data provide the first evidence that the wild-type TSHR TMD influences ligand binding affinity for the ECD, possibly by altering the conformation of the closely associated hinge region that contributes to the TSH-binding site.  相似文献   

8.
Our previous studies involving chimeric thyrotropin-lutropin/choriogonadotropin (TSH-LH/CG) receptors suggest that multiple segments spanning the entire extracellular domain of the human TSH receptor contribute to the TSH binding site. Nevertheless, the mid-region (segment C, amino acid residues 171-260) of the receptor extracellular domain is particularly important in TSH binding. In the present studies, we constructed seven new chimeric receptors in order to analyze segment C in further detail. Seven small segments spanning segment C of the TSH receptor were replaced with the counterpart of the rat LH/CG receptor. These mutant receptors were stably introduced into Chinese hamster ovary cells and were tested for hormone binding and cAMP responsiveness to hormone stimulation. The results indicate that 11 amino acids of the TSH receptor (Lys-201 to Lys-211) and the corresponding region of the LH/CG receptor (Thr-202 to Ile-212) are important for specific TSH and human CG binding, respectively. In addition, nine amino acids of the TSH receptor (Gly-222 to Leu-230) are also involved in TSH binding. A further conclusion from these data is that TSH and human CG bind to partially overlapping sites on their respective receptor molecules.  相似文献   

9.
The TSH receptor (TSHR) comprises an extracellular leucine-rich domain (LRD) linked by a hinge region to the transmembrane domain (TMD). Insight into the orientation of these components to each other is required for understanding how ligands activate the receptor. We previously identified residue E251 at the LRD-hinge junction as contributing to coupling TSH binding with receptor activation. However, a single residue cannot stabilize the LRD-hinge unit. Therefore, based on the LRD crystal structure we selected for study four other potential LRD-hinge interface charged residues. Alanine substitutions of individual residues K244, E247, K250 and R255 (as well as previously known E251A) did not affect TSH binding or function. However, the cumulative mutation of these residues in varying permutations, primarily K250A and R255A when associated with E251A, partially uncoupled TSH binding and function. These data suggest that these three residues, spatially very close to each other at the LRD base, interact with the hinge region. Unexpectedly and most important, monoclonal antibody CS-17, a TSHR inverse agonist whose epitope straddles the LRD-hinge, was found to interact with residues K244 and E247 at the base of the convex LRD surface. These observations, together with the functional data, exclude residues K244 and E247 from the TSHR LRD-hinge interface. Further, for CS-17 accessibility to K244 and E247, the concave surface of the TSHR LRD must be tilted forwards towards the hinge region and plasma membrane. Overall, these data provide insight into the mechanism by which ligands either activate the TSHR or suppress its constitutive activity.  相似文献   

10.
Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.  相似文献   

11.
Similar to the higher vertebrates, the pituitary in bony fishes express three glycoprotein hormones: thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH). In addition to the appropriate secretion of these hormones, the timely and quantitative expression of their specific receptors (TSHR, FSHR and LHR) in the target tissues is an essential requirement for their physiological action. In fishes that constitute a very diverse group of vertebrates, there are only a few published reports of primary structure of these receptors although other examples have been communicated briefly. This review will summarize these reports as well as to describe the insights gained from what is known about the mammalian receptors. The structural organization of the fish receptors (as deduced from the encoding cDNAs) is highly homologous to the higher vertebrate receptors in that there is a 7-pass transmembrane region and an N-terminal extracellular domain, which contributes to ligand specificity. In mammals, the FSHR and the TSHR genes are composed of 10 exons whereas the LHR gene is composed of 11 exons. The position of the 'extra intron' is conserved in the catfish LHR gene. In the mammals, the transmembrane domain of each of the three glycoprotein hormone receptors is encoded by a single exon, however, in the salmon genes and homologous invertebrate genes, this portion of the receptor is encoded by multiple exons. In general, the tissue-specific expression of these receptors is similar to that seen in mammals, however, the gonadal expression of TSHR in the striped bass and sunrise sculpin and the renal expression of LHR in the channel catfish are unique.  相似文献   

12.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC), like the other members of the membrane guanylate cyclase family, is a single transmembrane-spanning protein. The transmembrane domain separates the protein into two regions, extracellular and intracellular. The extracellular region contains the ANF-binding domain and the intracellular region the catalytic domain located at the C-terminus of the protein. Preceding the catalytic domain, the intracellular region is comprised of the following functional domains: juxtaposed 40 amino acids to the transmembrane domain is the ATP-regulated module (ARM) domain [also termed the kinase homology domain (KHD)], and the putative dimerization domain. The ANF-RGC signaling is initiated by hormone, ANF, binding to its extracellular binding site. The binding signal is transduced through the transmembrane domain to the intracellular portion where ATP binding to the ARM domain partially activates the cyclase and prepares it for subsequent steps involving phosphorylation and attaining the fully activated state. This chapter reviews the signaling modules of ANF-RGC.  相似文献   

13.
To gain insight into the thyrotropin hormone (TSH) receptor (TSHR) cleavage, we sought to convert the noncleaving luteinizing hormone (LH) receptor (LHR) into a cleaved, two-subunit molecule. For this purpose, we generated a series of LHR mutants and chimeric LH-TSH receptors. Cleavage of mature, ligand binding receptors on the cell surface was determined by covalent 125I-labeled hCG crosslinking to intact, stably transfected mammalian cells. We first targeted a cluster of three N-linked glycans in the LHR (N295, N303, N317) in a region corresponding to the primary TSHR cleavage site, which has only one N-linked glycan. Elimination by mutagenesis of the most strategic N-linked glycan (LHR-N317Q) generated only a trace amount of LHR cleavage. Removal of the other N-linked glycans had no additive effect. A much greater degree of cleavage ( approximately 50%) was evident in a chimeric LH-TSHR in which the juxtamembrane segment of the LHR (domain E; amino acids 317-367) was replaced with the corresponding domain of the TSHR (residues 363-418). Similarly cleaving LHR were created using a much smaller component within this region, namely LHR-NET317-319 replaced with TSHR-GQE367-369, or by substitution of the same three amino-acid residues with AAA (LHR-NET317-319AAA). In summary, our data alter current concepts regarding TSHR cleavage by suggesting limited (not absent) amino-acid specificity in a region important for TSHR cleavage (GQE367-369). The data also support the concept of a separate and distinct downstream cleavage site 2 in the TSHR.  相似文献   

14.
The luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein hormone receptors share a common modular topography, with an N-terminal extracellular ligand binding domain and a C-terminal seven-transmembrane transduction domain. The ligand binding domain consists of 9 leucine-rich repeats, flanked by N- and C-terminal cysteine-rich regions. Recently, crystal structures have been published of the extracellular domains of the FSH and TSH receptors. However, the C-terminal cysteine-rich region (CCR), also referred to as the "hinge region," was not included in these structures. Both structure and function of the CCR therefore remain unknown. In this study we set out to characterize important domains within the CCR of the LH receptor. First, we mutated all cysteines and combinations of cysteines in the CCR to identify the most probable disulfide bridges. Second, we exchanged large parts of the LH receptor CCR by its FSH receptor counterparts, and characterized the mutant receptors in transiently transfected HEK 293 cells. We zoomed in on important regions by focused exchange and deletion mutagenesis followed by alanine scanning. Mutations in the CCR specifically decreased the potencies of LH and hCG, because the potency of the low molecular weight agonist Org 41841 was unaffected. Using this unbiased approach, we identified Asp(330) and Tyr(331) as key amino acids in LH/hCG mediated signaling.  相似文献   

15.
Cloning, sequencing and expression of human TSH receptor   总被引:16,自引:0,他引:16  
Complementary cDNA clones encoding the TSH (thyroid stimulatory hormone) receptor were isolated from a human thyroid lambda gt10 library using Iow stringency hybridization with LH/hCG (luteinizing hormone-human choriogonadotropic hormone) receptor probes. Sequencing of the clones showed a 764 amino acid open reading frame. The first 21 amino acids probably correspond to a signal peptide, the mature protein thus contains 743 amino acids (calculated molecular weight: 84,501 daltons). Its putative structure consists of a 394 amino acid extracellular domain, a 266 amino acid membrane spanning domain with 7 putative transmembrane segments and a 83 amino acid intracellular domain. A high degree of homology is observed with LH/hCG receptor suggesting the definition of a new subfamily of G-protein coupled receptors. Computer search showed the presence in the putative third intracellular loop of a motif resembling that described in the non receptor type protein tyrosine kinases (c-src, c-yes, c-fgr, etc...). RNA blots showed that the receptor messenger RNA consists of two major species of 4300 and 3900 nucleotides. The cDNA was inserted into an expression vector and after transfection into COS 7 cells it was shown to produce a functional TSH receptor.  相似文献   

16.
Many cognate low molecular weight (LMW) agonists bind to seven transmembrane-spanning receptors within their transmembrane helices (TMHs). The thienopyrimidine org41841 was identified previously as an agonist for the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) and suggested to bind within its TMHs because it did not compete for LH binding to the LHCGR ectodomain. Because of its high homology with LHCGR, we predicted that thyroid-stimulating hormone receptor (TSHR) might be activated by org41841 also. We show that org41841 is a partial agonist for TSHR but with lower potency than for LHCGR. Analysis of three-dimensional molecular models of TSHR and LHCGR predicted a binding pocket for org41841 in common clefts between TMHs 3, 4, 5, 6, and 7 and extracellular loop 2 in both receptors. Evidence for this binding pocket was obtained in signaling studies with chimeric receptors that exhibited improved responses to org41841. Furthermore, a key receptor-ligand interaction between the highly conserved negatively charged E3.37 and the amino group of org41841 predicted by docking of the ligand into the three-dimensional TSHR model was experimentally confirmed. These findings provide the first evidence that, in contrast to the ectodomain binding of cognate ligands, a LMW agonist can bind to and activate glycoprotein hormone receptors via interaction with their transmembrane domain.  相似文献   

17.
Purification, cloning, and expression of the prolactin receptor   总被引:1,自引:0,他引:1  
The rat liver prolactin receptor has been purified to homogeneity, and partial amino acid sequences have been obtained. The structure of the receptor has been deduced from a single complementary DNA clone. The mature protein of 291 amino acids has a relatively long extracellular region, a single transmembrane segment, and a short (57 amino acids) cytoplasmic domain. With the rat cDNA used as a probe, the prolactin receptor in rabbit mammary gland and human hepatoma cells has also been isolated. These tissues contain a second, longer form of the receptor (592 and 598 amino acids, respectively). Both the short and long forms of the prolactin receptor show regions of strong sequence identity with the human and rabbit growth hormone receptors, suggesting that the prolactin and growth hormone receptors originate from a common ancestor.  相似文献   

18.

Background

The thyrotropin stimulating hormone receptor (TSHR) is a G protein coupled receptor (GPCR) with a large ectodomain. The ligand, TSH, acting via this receptor regulates thyroid growth and thyroid hormone production and secretion. The TSH receptor (TSHR) undergoes complex post –translational modifications including intramolecular cleavage and receptor multimerization. Since monomeric and multimeric receptors coexist in cells, understanding the functional role of just the TSHR multimers is difficult. Therefore, to help understand the physiological significance of receptor multimerization, it will be necessary to abrogate multimer formation, which requires identifying the ectodomain and endodomain interaction sites on the TSHR. Here, we have examined the contribution of the ectodomain to constitutive multimerization of the TSHR and determined the possible residue(s) that may be involved in this interaction.

Methodology/Principal Findings

We studied ectodomain multimer formation by expressing the extracellular domain of the TSHR linked to a glycophosphotidyl (GPI) anchor in both stable and transient expression systems. Using co-immunoprecipitation and FRET of tagged receptors, we established that the TSH receptor ectodomain was capable of multimerization even when totally devoid of the transmembrane domain. Further, we studied the effect of two residues that likely made critical contact points in this interaction. We showed that a conserved tyrosine residue (Y116) on the convex surface of the LRR3 was a critical residue in ectodomain multimer formation since mutation of this residue to serine totally abrogated ectodomain multimers. This abrogation was not seen with the mutation of cysteine 176 on the inner side of the LRR5, demonstrating that inter-receptor disulfide bonding was not involved in ectodomain multimer formation. Additionally, the Y116 mutation in the intact wild type receptor enhanced receptor degradation.

Conclusions/Significance

These data establish the TSH receptor ectodomain as one site of multimerization, independent of the transmembrane region, and that this interaction was primarily via a conserved tyrosine residue in LRR3.  相似文献   

19.
A specific H-bonding network formed between the central regions of transmembrane domain 6 and transmembrane domain 7 has been proposed to be critical for stabilizing the inactive state of glycoprotein hormone receptors. Many different constitutively activating TSH receptor point mutations have been identified in hyperfunctioning thyroid adenomas in the lower portion of transmembrane domain 6. Position D633 in transmembrane domain 6 of the human TSH receptor is the only one in which four different constitutively activating amino acid exchanges have been identified. Further in vitro substitutions led to constitutive activation of the TSH receptor (D633Y, F, C) as well as to the first inactivating TSH receptor mutation in transmembrane domain 6 without changes of membrane expression or TSH binding (D633R). Molecular modeling of this inactivating TSH receptor mutation revealed potential interaction partners of R633 in transmembrane domain 3 and/or transmembrane domain 7, presumably via hydrogen bonds that could be responsible for locking the TSH receptor in a completely inactive state. To further elucidate the H-bond network that most likely maintains the inactive state of the TSH receptor, we investigated these potential interactions by generating TSH receptor double mutants designed to break up possible H bonds. We excluded S508 in transmembrane domain 3 as a possible interaction partner of R633. In contrast, a partial response to TSH stimulation was rescued in a receptor construct with the double-substitution D633R/N674D. Our results therefore confirm the H bond between position 633 in transmembrane domain 6 and 674 in transmembrane domain 7 suggested by molecular modeling of the inactivating mutation D633R. Moreover, the mutagenesis results, together with a three-dimensional structure model, indicate that for TSH receptor activation and G protein-coupled signaling, at least one free available carboxylate oxygen is required as a hydrogen acceptor atom at position 674 in transmembrane domain 7.  相似文献   

20.
Bovine TSH (bTSH) has a higher affinity to the human TSHR (hTSHR) and a higher signaling activity than human TSH (hTSH). The molecular reasons for these phenomena are unknown. Distinct negatively charged residues (Glu297, Glu303, and Asp382) in the hinge region of the hTSHR are known to be important for bTSH binding and signaling. To investigate the potential relevance of these positions for differences between bTSH and hTSH in the interaction to the hTSHR, we determined bTSH- and hTSH-mediated cAMP production of several substitutions at these three hinge residues. To examine specific variations of hTSH, we also investigated the superagonistic hTSH analog TR1401 (TR1401), whose sequence differs from hTSH by four additional positively charged amino acids that are also present in bTSH. To characterize possible interactions between the acidic hTSHR positions Glu297, Glu303, or Asp382 and the additional basic residues of TR1401, we investigated TR1401 binding and signaling properties. Our data reveal increased cAMP signaling of the hTSHR using TR1401 and bTSH compared with hTSH. Whereas Asp382 seems to be important for bTSH- and TR1401-mediated but not for hTSH-mediated signaling, the substitution E297K exhibits a decreased signaling for all three TSH variants. Interestingly, bTSH and TR1401 showed only a slightly different binding pattern. These observations imply that specific residues of the hinge region are mediators of the superagonistic activity of bTSH and TR1401 in contrast to hTSH. Moreover, the simultaneous localization of binding components in the glycoprotein hormone molecule and the receptor hinge region permits important reevaluation of interacting hormone receptor domains.It is well known that bovine TSH (bTSH)2 has a higher affinity to the human TSHR (hTSHR) and a 6–10-fold higher intrinsic signaling activity than human TSH (hTSH) (15). Human TSH and bTSH share high amino acid sequence identity in the α-subunit (74.1%) and β-subunit (88.4%) (6). Studies involving fusion of hTSH and bTSH α- and β-subunits indicate that the higher affinity and the superagonistic cAMP activity of bTSH at the hTSHR depend primarily on amino acid sequences of the bTSH α-subunit (6). The most noticeable sequence differences between bovine and human TSH consist of four positively charged residues located in the surface-exposed loops of the α-subunit and one positively charged residue in the β-subunit of bTSH (Fig. 1). Moreover, it has previously been shown that positively charged α loop 1 (α-L1) residues are important for the high bioactivity of bTSH, and they have been implicated in receptor binding. These specific characteristics led to the generation of superagonistic hTSH analogs (6). The human TSH analog TR1401 and bTSH differ from hTSH most importantly by four additional positively charged amino acids located in close spatial proximity at the α-L1, of which three are located at identical positions in bTSH and TR1401 (Fig. 1).Open in a separate windowFIGURE 1.Sequence differences between TSH variants used in the present study. A, alignment of the α- and β-subunit of the hTSH (SwissProt: GLHA_HUMAN P01215, TSHB_HUMAN P01222), bTSH (GLHA_BOVIN P01217, TSHB_BOVIN P01223), and the superagonistic hTSH analog TR1401. The additional positively charged residues at TR1401 and at bTSH compared with wt hTSH are boxed in blue. Sequence numbering for human TSH and human analog TR1401 without signal peptide is shown in blue. B, three-dimensional structural TSH models illustrating the spatial localization of the charge related sequence differences between the TSH variants. The TSH α-subunit is shown in gray, and the β-subunit is in orange. Positively charged residues are highlighted in blue, and the C-α atoms of additional positively charged residues compared with hTSH are highlighted by blue globes. Panel i, bovine TSH, characterized by four additional positively charged residues in the α-L1 (T11K, Q13K, P16K, and Q20K) and one positively charged residue in the β-L3 (L69R); panel ii, human TSH without positively charged residues in the α-L1 and β-L3; and panel iii, the human TSH analog TR1401 is characterized by four additional positively charged residues in the α-L1 (Q13K, E14K, P16K, and Q20K) but shows a lack of the additional positively charged residue in the β-L3.TSH binds to the large extracellular region of its receptor. The extracellular region of the TSHR consists of the leucine-rich repeat domain (LRRD), which is linked with the membrane-spanning serpentine domain by the hinge region. Recently, the binding arrangements between the homologous FSH and a part of the FSH receptor ectodomain including the LRRD (FSH receptor amino acids Cys18–Ala246) have been identified (7). However, the hinge region is not contained in this x-ray structure (7).In vitro data provide convincing evidence for the functional importance of the hinge region for receptor activation and TSH binding (822). Recently, we specified positions Glu297 and Glu303 in the N-terminal portion and Asp382 in the C-terminal portion of the hTSHR hinge region as important for bTSH binding, suggesting that in the process of bTSH binding an extended hormone-binding site is obviously essential (18). The negative charge of positions Glu297 and Asp382 likely interact with positively charged residues of bTSH by complementary charge-charge interaction (18).To elucidate whether these hinge residues of the hTSHR are specific for interaction with bTSH, we investigated the functional characteristics of the hTSH analog TR1401 and the native ligand hTSH. For the comparison of these two TSH variants with bTSH, we used several mutations and alanine combinations at the signaling and bTSH binding-sensitive hTSHR hinge positions Glu297, Glu303, and Asp382. Our data indicate that the higher bioactivity of the TSH variants TR1401 and bTSH are mediated by specific charged residues of the hormone and the hinge region of the hTSHR. Our findings also support the concept that the hinge region of the TSHR is an modulator of TSH potency and efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号