首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electric pulses are known to affect the outer membrane and intracellular structures of tumour cells. By applying electrical pulses of 450 ns duration with electric field intensity of 8 kV/cm to HepG2 cells for 30 s, electric pulse‐induced changes in the integrity of the plasma membrane, apoptosis, viability and mitochondrial transmembrane potential were investigated. Results demonstrated that electric pulses induced cell apoptosis and necrosis accompanied with the decrease of mitochondrial transmembrane potential and the formation of pores in the membrane. The role of cytoskeleton in cellular response to electric pulses was investigated. We found that the apoptotic and necrosis percentages of cells in response to electric pulses decreased after cytoskeletal disruption. The electroporation of cell was not affected by cytoskeletal disruption. The results suggest that the disruption of actin skeleton is positive in protecting cells from killing by electric pulses, and the skeleton is not involved in the electroporation directly.  相似文献   

2.
Nowadays, due to the wide use of mobile phones, extensive studies have been carried out on the effects of magnetic field (MF) on public health. In this paper, we study the effect of 217 Hz MF similar to that generated by GSM900 mobile phones on cancer and healthy cells treated with electric pulse and cytotoxic drug. The experiments conducted include exposure to (a) electric pulses alone (4000 square-wave electric pulses with low amplitude of 70 V/cm and frequency of 5 kHz), (b) electric pulses following MF exposure, (c) electrochemotherapy (electric pulses and cytotoxic drug) alone and (d) MF exposure with subsequent electrochemotherapy. The results indicate that the percentage of apoptosis decreases significantly (p < 0.05) in treatment groups using electrochemotherapy after MF exposure compared to that in treatment groups using electrochemotherapy alone. We observed that 217 Hz MF similar to that generated by GSM900 mobile phones can incur resistance of the cells in response to electric pulses. Our findings implied the existence of amplitude window effect in alternations induced by extremely low-frequency MF.  相似文献   

3.
Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs “Synergistic electrolysis and electroporation” (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation.  相似文献   

4.
Modifications in the cell membrane potential have been suggested to affect signaling mechanisms participating in diverse cellular processes, many of which involve structural cellular alterations. In order to contribute some evidence in this respect, we explored the effects of several depolarizing procedures on the structure and monolayer organization of bovine corneal endothelial cells in culture. Visually confluent cell monolayers were incubated with or without the depolarizing agent, either in a saline solution or in culture medium for up to 30 min. Membrane potential was monitored by fluorescence microscopy using oxonol V. Fluorescent probes were employed for F-actin, microtubules, and vinculin. Depolarization of the plasma membrane, achieved via the incorporation of gramicidin D into confluent endothelial cells or by modifications of the extracellular saline composition, provoked an increment of oxonol fluorescence and changes in cell morphology, consisting mainly of modifications in the cytoskeletal organization. In some areas, noticeable intercellular spaces appear. The cytoskeleton modifications mainly consist of a marked redistribution of F-actin and microtubules, with accompanying changes in vinculin localization. The results suggest that the depolarization of the plasma membrane potential may participate in mechanisms involved in cytoskeleton organization and monolayer continuity in corneal endothelial cells in culture.  相似文献   

5.
Cells exposed to short and intense electric pulses become permeable to a number of various ionic molecules. This phenomenon was termed electroporation or electropermeabilization and is widely used for in vitro drug delivery into the cells and gene transfection. Tissues can also be permeabilized. These new approaches based on electroporation are used for cancer treatment, i.e., electrochemotherapy, and in vivo gene transfection. In vivo electroporation is thus gaining even wider interest. However, electrode geometry and distribution were not yet adequately addressed. Most of the electrodes used so far were determined empirically. In our study we 1) designed two electrode sets that produce notably different distribution of electric field in tumor, 2) qualitatively evaluated current density distribution for both electrode sets by means of magnetic resonance current density imaging, 3) used three-dimensional finite element model to calculate values of electric field for both electrode sets, and 4) demonstrated the difference in electrochemotherapy effectiveness in mouse tumor model between the two electrode sets. The results of our study clearly demonstrate that numerical model is reliable and can be very useful in the additional search for electrodes that would make electrochemotherapy and in vivo electroporation in general more efficient. Our study also shows that better coverage of tumors with sufficiently high electric field is necessary for improved effectiveness of electrochemotherapy.  相似文献   

6.
Magnetic resonance electrical impedance tomography (MREIT) was recently proposed for determining electric field distribution during electroporation in which cell membrane permeability is temporary increased by application of an external high electric field. The method was already successfully applied for reconstruction of electric field distribution in agar phantoms. Before the next step towards in vivo experiments is taken, monitoring of electric field distribution during electroporation of ex vivo tissue ex vivo and feasibility for its use in electroporation based treatments needed to be evaluated. Sequences of high voltage pulses were applied to chicken liver tissue in order to expose it to electric field which was measured by means of MREIT. MREIT was also evaluated for its use in electroporation based treatments by calculating electric field distribution for two regions, the tumor and the tumor-liver region, in a numerical model based on data obtained from clinical study on electrochemotherapy treatment of deep-seated tumors. Electric field distribution inside tissue was successfully measured ex vivo using MREIT and significant changes of tissue electrical conductivity were observed in the region of the highest electric field. A good agreement was obtained between the electric field distribution obtained by MREIT and the actual electric field distribution in evaluated regions of a numerical model, suggesting that implementation of MREIT could thus enable efficient detection of areas with insufficient electric field coverage during electroporation based treatments, thus assuring the effectiveness of the treatment.  相似文献   

7.

Background

Recently electroporation using biphasic pulses was successfully applied in clinical developments for treating tumours in humans and animals. We evaluated the effects of electrical treatment on cell adhesion behaviour of breast cancer cells and fibroblasts. By applying bipolar electrical pulses we studied short- and long-lived effects on cell adhesion and survival, actin cytoskeleton and cell adhesion contacts in adherent cancer cells and fibroblasts.

Methods

Two cancer cell lines (MDA-MB-231 and MCF-7) and one fibroblast cell line 3T3 were used. Cells were exposed to high field intensity (200 - 1000 V/cm). Cell adhesion and survival after electrical exposure were studied by crystal violet assay and MTS assay. Cytoskeleton rearrangement and cell adhesion contacts were visualized by actin staining and fluorescent microscope.

Results

The degree of electropermeabilization of the adherent cells elevated steadily with the increasing of the field intensity. Adhesion behaviour of fibroblasts and MCF-7 was not significantly affected by electrotreatment. Interestingly, treating the loosely adhesive cancer cell line MDA-MB-231 with 200 V/cm and 500 V/cm resulted in increased cell adhesion. Cell replication of both studied cancer cell lines was disturbed after electropermeabilization. Electroporation influenced the actin cytoskeleton in cancer cells and fibroblasts in different ways. Since it disturbed temporarily the actin cytoskeleton in 3T3 cells, in cancer cells treated with lower and middle field intensity actin cytoskeleton was well presented in stress fibers, filopodia and lamellipodia. The electrotreatment for cancer cells provoked preferentially cell-cell adhesion contacts for MCF-7 and cell-ECM contacts for MDA-MB- 231.

Conclusions

Cell adhesion and survival as well as the type of cell adhesion (cell-ECM or cell-cell adhesion) induced by the electroporation process is cell specific. The application of suitable electric pulses can provoke changes in the cytoskeleton organization and cell adhesiveness, which could contribute to the restriction of tumour invasion and thus leads to the amplification of anti-tumour effect of electroporation-based tumour therapy.  相似文献   

8.

Background  

Electrochemotherapy and gene electrotransfer are novel promising treatments employing locally applied high electric pulses to introduce chemotherapeutic drugs into tumor cells or genes into target cells based on the cell membrane electroporation. The main focus of this paper was to calculate analytically and numerically local electric field distribution inside the treated tissue in two dimensional (2D) models for different plate and needle electrode configurations and to compare the local electric field distribution to parameter U/d, which is widely used in electrochemotherapy and gene electrotransfer studies. We demonstrate the importance of evaluating the local electric field distribution in electrochemotherapy and gene electrotransfer.  相似文献   

9.
A Digital Poration System (DPS), a versatile device for electrotreatment of biological objects by electric field pulses; was designed, constructed, and implemented. A feature distinguishing DPS from the currently available electroporators based on capacitor discharge through the load is the use of a digital-to-analog converter card as a generator of pulses applied for electroporation of biological membranes, with further amplification of the pulse by both voltage and current. The shape of pulses, including bipolar pulses, is arbitrarily programmable in DPS unlike other electroporators providing exponentially decaying and square-wave pulses only. Thus, the application area of DPS is substantially extended. In DPS, many of the drawbacks inherent in capacitor electroporators are removed, including the need for an additional external pulse analyzer monitoring and logging the electroporation processes, the necessity to recharge the capacitor before any new pulse, a poor precision of setting and measuring the pulse parameters, the need for an additional generator of long-lasting low-voltage signals for electrophoresis of ions into the porated object, the need for additional AC generators for the alignment of cells before, after, and during electroporation, and the need for an additional microprocessor to control multi-pulse and/or repetitive protocols. DPS provides a slew rate of about 1 V/1 ns required for the electroporation of most mammalian somatic cells, with +/- 250 V output voltage and 500 Ohm load resistance. The application area of DPS is much wider than for the available porators. It includes electrochemotherapy, cell electrofusion, oocyte activation by mimicking calcium waves (the latter two are the crucial components of mammalian organism cloning technology), dielectrophoretic bunching and orientation ordering of cells, sorting of cells, and electrophoresis of charged species into the cells.  相似文献   

10.
The most important unpleasant sensation of electrochemotherapy is muscle contraction. One of the causes of this discomfort is electrochemotherapy in the low-frequency range (1 Hz). To resolve this problem, there are two solutions: first, increasing the repetition frequency of electric pulses above the tetanic frequency and, second, reducing the voltage amplitude. This study examines the antitumor effectiveness of treatment using low electric fields and high frequency in the presence and absence of chemotherapeutic agents. High-voltage amplitude electrochemotherapy was performed by eight pulses, at 1,000 V/cm, of 100-μs duration at 1-Hz and 5-kHz repetition frequency. In the low-voltage amplitude protocol, 4,000 pulses, of 100-μs duration at 5-kHz repetition frequency with 70, 100 and 150 V/cm were delivered to invasive ductal carcinoma tumors after intratumoral injection of bleomycin. Our data demonstrate significant differences in tumor volumes and the curability rate between mice treated by 70 V/cm compared to other groups. Electrochemotherapy, which is specified by a higher repetition frequency of electric pulses (5 kHz) and low voltage, inhibits tumor growth. This protocol has a comparable effect to 1-Hz pulse repetition electric pulses with high voltage. Based on these results, the 4,000 pulses of 70 V/cm with 5-kHz frequency are most effective. This protocol demonstrates inhibition of tumor growth without any need for drug administration.  相似文献   

11.
Pulsed electric fields with microsecond pulse width (μsPEFs) are used clinically; namely, irreversible electroporation/Nanoknife is used for soft tissue tumor ablation. The μsPEF pulse parameters used in irreversible electroporation (0.5–1 kV/cm, 80–100 pulses, ~100 μs each, 1 Hz frequency) may cause an internal field to develop within the cell because of the disruption of the outer cell membrane and subsequent penetration of the electric field. An internal field may disrupt voltage-sensitive mitochondria, although the research literature has been relatively unclear regarding whether such disruptions occur with μsPEFs. This investigation reports the influence of clinically used μsPEF parameters on mitochondrial respiration in live cells. Using a high-throughput Agilent Seahorse machine, it was observed that μsPEF exposure comprising 80 pulses with amplitudes of 600 or 700 V/cm did not alter mitochondrial respiration in 4T1 cells measured after overnight postexposure recovery. To record alterations in mitochondrial function immediately after μsPEF exposure, high-resolution respirometry was used to measure the electron transport chain state via responses to glutamate-malate and ADP and mitochondrial membrane potential via response to carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. In addition to measuring immediate mitochondrial responses to μsPEF exposure, measurements were also made on cells permeabilized using digitonin and those with compromised cytoskeleton due to actin depolymerization via treatment with the drug latrunculin B. The former treatment was used as a control to tease out the effects of plasma membrane permeabilization, whereas the latter was used to investigate indirect effects on the mitochondria that may occur if μsPEFs impact the cytoskeleton on which the mitochondria are anchored. Based on the results, it was concluded that within the pulse parameters tested, μsPEFs alone do not hinder mitochondrial physiology but can be used to impact the mitochondria upon compromising the actin. Mitochondrial susceptibility to μsPEF after actin depolymerization provides, to our knowledge, a novel avenue for cancer therapeutics.  相似文献   

12.
The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway.  相似文献   

13.
Kerrigan MJ  Hall AC 《Biorheology》2005,42(4):283-293
Articular chondrocytes are exposed to significant changes in extracellular osmolarity during normal joint activity, which can lead to changes in cell volume and metabolism of the extracellular matrix (ECM). Chondrocytes can respond to cell swelling/shrinking by volume regulatory pathways, but the signalling pathways are poorly understood although a role for the cytoskeleton is frequently implicated. Here, we have investigated the effects of disruption of the chondrocyte F-actin cytoskeleton on the recovery of cell volume by RVD. The cytoskeleton was perturbed using the relatively specific agent latrunculin B (5 microM; 30 min) and loss of F-actin integrity quantified using fluorescent phalloidin-labelling and confocal laser scanning microscopy (CLSM). Imaging of isolated chondrocytes labelled with Fura-2 to measure the fluorescence associated with cell volume changes, showed that the extent of hypo-osmotic swelling was unaffected by latrunculin B treatment. Two categories of the chondrocyte RVD response were observed: 'fast' RVD where at 3 min post-osmotic challenge there was a recovery in cell fluorescence of >or=80%, whereas other cells exhibited 'slow' RVD. Latrunculin B increased the proportion of chondrocytes demonstrating 'fast' RVD by approximately 10 fold and reduced those cells showing 'slow' RVD. An inhibitor of chondrocyte RVD (REV 5901) had no significant effect on the integrity of the cytoskeleton showing that the RVD response could be inhibited independent of the state of the F-actin cytoskeleton. These results suggest that the intact cortical F-actin cytoskeleton has a restraining effect on the RVD response of isolated bovine articular chondrocytes.  相似文献   

14.
Actin subunits assemble into actin filaments whose dynamics and three-dimensional architectures are further regulated by a variety of cellular factors to establish the functional actin cytoskeleton. The C-glucosidic ellagitannin vescalagin and its simpler analogue vescalin, affect both the dynamics and the ultrastructure of the actin cytoskeleton by directly binding to F-actin. Herein, we show that in vitro, the two compounds induce the formation of distinct F-actin networks characterized by different superstructures and dynamics. In living mature osteoclasts, highly specialized bone-degrading cells that constantly remodel their cytoskeleton, vescalagin and vescalin alter actin dynamics at podosomes and compromise the integrity of the podosome belt that forms the bone-degrading apparatus. Both compounds target the bone-resorbing activity at concentrations that preserve osteoclastic maturation and survival and with no detectable impact on the behaviour of bone-forming osteoblastic cells. This anti-osteoclastic activity of vescalagin and vescalin reveals the potential of targeting actin dynamics as a new therapeutic opportunity and, in this case, as a plausible approach for the local treatment of osteoporosis.  相似文献   

15.
Cell permeabilization by electric pulses (EP), or electroporation, is widely used for intracellular delivery of drugs and plasmids, as well as for tumour and tissue ablation. We found that cells pre‐treated with 100‐μs EP develop delayed hypersensitivity to subsequent EP applications. Sensitizing B16 and CHO cells by splitting a single train of eight 100‐μs EP into two trains of four EP each (with 5‐min. interval) decreased the LD50 1.5–2 times. Sensitization profoundly enhanced the electroporation‐assisted uptake of bleomycin, a cell‐impermeable cytotoxic agent accepted for killing tumours by electrochemotherapy. EP exposures that were not lethal per se caused cell death in the presence of bleomycin and proportionally to its concentration. Sensitizing cells by a split‐dose EP exposure increased bleomycin‐mediated lethality to the same extent as a 10‐fold increase in bleomycin concentration when using a single EP dose. Likewise, sensitization by a split‐dose EP exposure (without changing the overall dose, pulse number, or amplitude) enhanced the electroporative uptake of propidium up to fivefold. Enhancement of the electroporative uptake appears a key mechanism of electrosensitization and may benefit electrochemotherapy and numerous applications that employ EP for cell permeabilization.  相似文献   

16.
About 25 years after the publication of the first report on gene transfer in vitro in cultured cells by the means of electric pulses delivery, reversible cell electroporation for gene transfer and gene therapy (DNA electrotransfer) is at a cross in its development. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed. This knowledge has allowed developing new nucleic acids electrotransfer conditions using combinations of permeabilizing pulses of high voltage and short duration, and of electrophoretic pulses of low voltage and long duration, which are very efficient and safer. Feasibility of electric pulses delivery for gene transfer in humans is discussed taking into account that electric pulses delivery is already regularly used for localized drug delivery in the treatment of cutaneous and subcutaneous solid tumors by electrochemotherapy. Because recent technological developments made DNA electrotransfer more and more efficient and safer, this non-viral gene therapy approach is now ready to reach the clinical stage. A good understanding of DNA electrotransfer principles and the respect of safe procedures will be key elements for a successful future transfer DNA electrotransfer into the clinics.  相似文献   

17.
The effects of intense submicrosecond electrical pulses on cells   总被引:5,自引:0,他引:5       下载免费PDF全文
A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 micros-60 ns, electric field intensities 3-150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of increased surface membrane permeability. For nanosecond pulses, more delayed propidium iodide uptake occurred with significantly later uptake of propidium iodide occurring after 60 ns pulses compared to 300 ns pulses. Cellular swelling occurred rapidly following 300 ns pulses, but was minimal following 60 ns pulses. These data indicate that submicrosecond pulses achieve temporally distinct effects on living cells compared to microsecond pulses. The longer pulses result in rapid permeability changes in the surface membrane that are relatively homogeneous across the cell population, consistent with electroporation, while shorter pulses cause surface membrane permeability changes that are temporally delayed and heterogeneous in their magnitude.  相似文献   

18.
In vivo electroporation is used as an effective technique for delivery of therapeutic agents such as chemotherapeutic drugs or DNA into target tissue cells for different biomedical purposes. In order to successfully electroporate a target tissue, it is essential to know the local electric field distribution produced by an application of electroporation voltage pulses. In this study three-dimensional finite element models were built in order to analyze local electric field distribution and corresponding tissue conductivity changes in rat muscle electroporated either transcutaneously or directly (i.e., two-plate electrodes were placed either on the skin or directly on the skeletal muscle after removing the skin). Numerical calculations of electroporation thresholds and conductivity changes in skin and muscle were validated with in vivo measurements. Our model of muscle with skin also confirms the in vivo findings of previous studies that electroporation “breaks” the skin barrier when the applied voltage is above 50?V.  相似文献   

19.
Electrical pulses have been widely used in biomedical fields, whose applications depend on the parameters such as durations and electric intensity. Conventional electroporation (0.1-1 kV/cm, 100 μs) has been used in cell fusion, transfection and electrochemotherapy. Recent studies with high-intensity (MV/cm) electric field applications with durations of several tens of nanoseconds can affect intracellular signal transduction and intracellular structures with plasma intact, resulting in an application of intracellular manipulation. The most recent development is the finding that parameters between those two ranges could be used to induce apoptosis of cancer cells. Proposal of apoptosis induction and tumor inhibition has advantages to pursue the treatment of cancer free of cytotoxic drugs.  相似文献   

20.
In vivo cell electrofusion   总被引:3,自引:0,他引:3  
In vitro electrofusion of cells brought into contact and exposed to electric pulses is an established procedure. Here we report for the first time the occurrence of fusion of cells within a tissue exposed in vivo to permeabilizing electric pulses. The dependence of electrofusion on the ratio of applied voltage to distance between the electrodes, and thus on the achievement of in vivo cell electropermeabilization (electroporation) is demonstrated in the metastasizing B16 melanoma tumor model. The kinetics of the morphological changes induced by cell electrofusion (appearance of syncytial areas or formation of giant cells) are also described, as well as the kinetics of mitosis and cell death occurrence. Finally, tissue dependence of in vivo cell electrofusion is reported and discussed, since electrofusion has been observed neither in liver nor in another tumor type. Particular microenvironmental conditions, such as the existence of reduced extracellular matrices, could be necessary for electrofusion achievement. Since biomedical applications of in vivo cell electropermeabilization are rapidly developing, we also discuss the influence of cell electrofusion on the efficacy of DNA electrotransfer for gene therapy and of antitumor electrochemotherapy, in which electrofusion could be an interesting advantage to treat metastasizing tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号