首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to genotoxic carcinogens in tobacco smoke is a major cause of lung cancer. However, the effect this has on DNA copy number and genomic stability during lung carcinogenesis is unclear. Here we used bacterial artificial chromosome array-based comparative genomic hybridization to examine the effect of NNK, a potent human lung carcinogen present in tobacco smoke, on the major genomic changes occurring during mouse lung adenocarcinogenesis. Observed were significantly more gross chromosomal changes in NNK-induced tumors compared with the spontaneous tumors. An average of 5.6 chromosomes were affected by large-scale changes in DNA copy number per NNK-induced tumor compared with only 2.0 in spontaneous lung tumors (p = 0.017). Further analysis showed that gains on chromosomes 6 and 8, and losses on chromosomes 11 and 14 were more common in NNK-induced tumors (p 相似文献   

2.
3.
BackgroundChemoprevention is the best cost-effective way regarding cancers. MicroRNAs (miRNAs) have been reported to be differentially expressed during the development of lung cancer. However, if lung cancer prevention can be achieved through modulating miRNAs expression so far remains unknown.PurposeTo discover ectopically expressed miRNAs in NNK-induced lung cancer and clarify whether Licochalcone A (lico A) can prevent NNK-induced lung cancer by modulating miRNA expression.Study design and methodsA/J mice were used to construct a lung cancer model by intraperitoneal injection with physiological saline NNK (100 mg/kg). Chemopreventive effects of lico A against lung cancer at 2 mg/kg and 20 mg/kg doses were evaluated in vivo. MicroRNA array and RT-qPCR were used to assess the expression levels of miRNAs. MLE-12 cells were treated with 0.1 mg/ml NNK, stimulating the ectopic expression pattern of miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p. miR-144-3p mimics and inhibitors were used to manipulate miR-144-3p levels. The effects of lico A (10 μM) on cell cycle distribution, apoptosis, and the expression of CK19, RASA1, miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p in NNK-treated MLE-12 cells were studied.ResultsThe expression levels of miR-144-3p, miR-20a-5p, and miR-29c-3p increased, while those of let-7d-3p and miR-328-3p decreased in both NNK-induced A/J mice and MLE-12 cells. Lico A could reverse the NNK-induced ectopic miRNA (miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p) expression both in vivo and in vitro and elicit in vivo lung cancer chemopreventive effect against NNK. In MLE-12 cells, the overexpression of miR-144-3p elicited the same effect as NNK regarding the expression of lung cancer biomarker CK19; the silencing of miR-144-3p reversed the effect of NNK on cell cycle distribution and apoptosis. Lico A could reverse the effect of NNK on the expression of miR-144-3p, CK19, and RASA1 (predicted target of miR-144-3p).ConclusionThe present study suggests that miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p were involved in the in vivo pathogenesis of NNK-induced lung cancer, and lico A could reverse the effect of NNK both in vivo and in vitro to elicit lung cancer chemopreventive effects through, at least partially, these five ectopically expressed miRNAs, especially miR-144-3p.  相似文献   

4.
Ninety percent of all human lung cancers are related to cigarette smoking. Both tobacco smoke and lung tumorigenesis are associated with drastically reduced levels of Clara cell 10-kDa protein (CC10), a multifunctional secreted protein, naturally produced by the airway epithelia of virtually all mammals. We previously reported that the expression of CC10 is markedly reduced in animals exposed to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK, a potent carcinogen in tobacco smoke. Furthermore, it has been reported that CC10 expression, induced in certain tumor cells, reverses the transformed phenotype. We demonstrate here that NNK exposure of CC10-knock-out (CC10-KO) mice causes a significantly higher incidence of airway epithelial hyperplasia and lung adenomas compared with wild type (WT) littermates (30% CC10-KO versus 5% WT, p = 0.041). We also found that compared with NNK-treated WT mice, CC10-KO mice manifest increased frequency of K-ras mutation, elevated level of Fas ligand (FasL) expression, and increased MAPK/Erk phosphorylation, all of which are considered predisposing events in NNK-induced lung tumorigenesis. We propose that CC10 has a protective role against NNK-induced lung tumorigenesis mediated via down-regulation of the above-mentioned predisposing events.  相似文献   

5.
6.
7.
Ascl2 has been shown to be involved in tumorigenesis in colorectal cancer (CRC), although its epigenetic regulatory mechanism is largely unknown. Here, we found that methylation of the Ascl2 promoter (bp -1670 ∼ -1139) was significantly increased compared to the other regions of the Ascl2 locus in CRC cells and was associated with elevated Ascl2 mRNA expression. Furthermore, we found that promoter methylation was predictive of CRC patient survival after analyzing DNA methylation data, RNA-Seq data, and clinical data of 410 CRC patient samples from the MethHC database, the MEXPRESS database, and the Cbioportal website. Using the established TET methylcytosine dioxygenase 2 (TET2) knockdown and ectopic TET2 catalytic domain–expression cell models, we performed glucosylated hydroxymethyl–sensitive quatitative PCR (qPCR), real-time PCR, and Western blot assays to further confirm that hypermethylation of the Ascl2 promoter, and elevated Ascl2 expression in CRC cells was partly due to the decreased expression of TET2. Furthermore, BCLAF1 was identified as a TET2 interactor in CRC cells by LC-MS/MS, coimmunoprecipitation, immunofluorescence colocalization, and proximity ligation assays. Subsequently, we found the TET2–BCLAF1 complex bound to multiple elements around CCGG sites at the Ascl2 promoter and further restrained its hypermethylation by inducing its hydroxymethylation using chromatin immunoprecipitation-qPCR and glucosylated hydroxymethyl-qPCR assays. Finally, we demonstrate that TET2-modulated Ascl2-targeted stem gene expression in CRC cells was independent of Wnt signaling. Taken together, our data suggest an additional option for inhibiting Ascl2 expression in CRC cells through TET2–BCLAF1–mediated promoter methylation, Ascl2-dependent self-renewal of CRC progenitor cells, and TET2–BCLAF1–related CRC progression.  相似文献   

8.
We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture.  相似文献   

9.
Antiestrogen therapy resistance remains a huge stumbling block in the treatment of breast cancer. We have found significant elevation of O6 methylguanine DNA methyl transferase (MGMT) expression in a small sample of consecutive patients who have failed tamoxifen treatment. Here, we show that tamoxifen resistance is accompanied by upregulation of MGMT. Further we show that administration of the MGMT inhibitor, O6-benzylguanine (BG), at nontoxic doses, leads to restoration of a favorable estrogen receptor alpha (ERα) phosphorylation phenotype (high p-ERα Ser167/low p-ERα Ser118), which has been reported to correlate with sensitivity to endocrine therapy and improved survival. We also show BG to be a dual inhibitor of MGMT and ERα. In tamoxifen-resistant breast cancer cells, BG alone or in combination with antiestrogen (tamoxifen [TAM]/ICI 182,780 [fulvestrant, Faslodex]) therapy enhances p53 upregulated modulator of apoptosis (PUMA) expression, cytochrome C release and poly (ADP-ribose) polymerase (PARP) cleavage, all indicative of apoptosis. In addition, BG increases the expression of p21cip1/waf1. We also show that BG, alone or in combination therapy, curtails the growth of tamoxifen-resistant breast cancer in vitro and in vivo. In tamoxifen-resistant MCF7 breast cancer xenografts, BG alone or in combination treatment causes significant delay in tumor growth. Immunohistochemistry confirms that BG increases p21cip1/waf1 and p-ERα Ser167 expression and inhibits MGMT, ERα, p-ERα Ser118 and ki-67 expression. Collectively, our results suggest that MGMT inhibition leads to growth inhibition of tamoxifen-resistant breast cancer in vitro and in vivo and resensitizes tamoxifen-resistant breast cancer cells to antiestrogen therapy. These findings suggest that MGMT inhibition may provide a novel therapeutic strategy for overcoming antiestrogen resistance.  相似文献   

10.
1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) is an important cause of pulmonary toxicity. BCNU alkylates DNA at the O(6) position of guanine. O(6)-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that removes alkyl groups from the O(6) position of guanine. To determine whether overexpression of MGMT in a lung cell reduces BCNU toxicity, the MGMT gene was transfected into A549 cells, a lung epithelial cell line. Transfected A549 cell populations demonstrated high levels of MGMT RNA, MGMT protein, and DNA repair activity. The overexpression of MGMT in lung epithelial cells provided protection from the cytotoxic effects of BCNU. Control A549 cells incubated with 100 microM BCNU had a cell survival rate of 12.5 +/- 1.2%; however, A549 cells overexpressing MGMT had a survival rate of 71.8 +/- 2.7% (P < 0.001). We also demonstrated successful transfection of MGMT into human pulmonary artery endothelial cells and a primary culture of rat type II alveolar epithelial cells with overexpression of MGMT, resulting in significant protection from BCNU toxicity. These data suggest that overexpression of DNA repair proteins such as MGMT in lung cells may protect the lung cells from cytotoxic effects of cancer chemotherapy drugs such as BCNU.  相似文献   

11.
A growing body of evidence from studies in laboratory animals indicates that green tea protects against cancer development at various organ sites. We have previously shown that green tea, administered as drinking water, inhibits lung tumor development in A/J mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-l-butanone (NNK), a potent nicotine-derived lung carcinogen found in tobacco. The inhibitory effect of green tea has been attributed to its major polyphenolic compound, epigallocatechin gallate (EGCG), and, to a lesser extent, to caffeine. We have also demonstrated that while levels of O6-methylguanine, a critical lesion in NNK lung tumorigenesis, were not affected in lung DNA. However, the levels of 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, were significantly suppressed in mice treated with green tea or EGCG. These studies underscore the importance of the antioxidant activity of green tea and EGCG for their inhibitory activity against lung tumorigenesis. Unlike green tea, the effect of black tea on carcinogenesis has been scarcely studied, even though the worldwide production and consumption of black tea far exceeds that of green tea. The oxidation products found in black tea, thearubigins and theaflavins, also possess antioxidant activity, suggesting that black tea may also inhibit NNK-induced lung tumorigenesis. Indeed, bioassays in A/J mice have shown that black tea given as drinking water retarded the development of lung cancer caused by NNK. However, data on the relationship of black tea consumption with the lung cancer risk in humans are limited and inconclusive. There is a need for additional tumor bioassays in animal models to better examine the protective role of black tea against lung cancer. The development of adenocarcinomas and adenosquamous carcinomas in F344 rats upon chronic administration of NNK provides an important and relevant model for lung carcinogenesis in smokers. Thus far, no information was previously available regarding the effects of tea on this model. We conducted a 2-year lifetime bioassay in F344 rats to determine whether black tea and caffeine are protective against lung tumorigenesis induced by NNK. Our studies in both mice and rats have generated important new data that support green and black tea and caffeine as potential preventive agents against lung cancer, suggesting that a closer examination of the roles of tea and caffeine on lung cancer in smokers may be warranted.  相似文献   

12.
To gain insight into the mechanism by which angiotensin II type 2 receptor (AT(2)) regulates carcinogen-induced lung tumorigenesis, we have newly developed anti-AT(2) single chain variable fragment (ScFv) antibodies using a rodent phage-displayed recombinant antibody library with various peptide fragments of the receptor protein, and investigated the expression of the AT(2) receptor protein. The specificity of the antibodies was verified using AT(2) over-expressing COS-7 cells and AT(2) naturally expressing PC12W cells. In control wild type mouse lung, a stronger immunoreactivity was observed in bronchial epithelial cells. A moderate immunoreactivity was detected in pulmonary vascular walls and vascular endothelial cells. In the lungs possessing tobacco-specific nitrosamine (NNK)-induced tumors, significantly increased AT(2) and AT(1 )immunostaining was observed in adenomatous lesions. These data suggest that the increase in both receptors' expression in the alveolar epithelial cells may be accompanied with the onset of NNK-induced tumorigenesis and hence play important roles in lung tumorigenesis.  相似文献   

13.
Matrix metalloproteinases (MMPs) have been implicated in a variety of pathophysiological conditions, of which MMP-7 is expressed by tumor cells of epithelial and mesenchymal origin. However, the function of MMP-7 in human lung adenocarcinoma (LAC) is unclear. In the present study the expression of MMP-7 in LAC was examined by immunohistochemical assay using a tissue microarray procedure. A loss-of-function experiment was performed to explore the effects and molecular mechanisms of lentiviral vector-mediated MMP-7 siRNA (siMMP-7) on cell proliferation and invasive potential in LAC A549 cells, measured by MTT and Transwell assays, respectively. It was found that, the expression of MMP-7 protein in LAC was significantly increased compared with that in adjacent non-cancerous tissues (ANCT) (76.0% vs 44.0%, P<0.001), and positively correlated with lymph node metastases of the tumor (P=0.014). Furthermore, targeted inhibition of cyclooxygenase-2 (COX-2) by siRNA downregulated the expression of MMP-7 and inhibited invasion of LAC cells, and knockdown of MMP-7 suppressed tumor proliferation and invasion in LAC cells. Taken together, our findings indicate that increased expression of MMP-7 is associated with lymph node metastasis and upregulated by COX-2, and promotes the tumorigenesis of LAC, suggesting that MMP-7 may be a potential therapeutic target for the treatment of cancer.Key words: MMP-7, COX-2, lung adenocarcinoma  相似文献   

14.
15.
Mechanisms of inhibition of carcinogenesis by tea   总被引:8,自引:0,他引:8  
Tea (Camellia sinensis) preparations have been shown to inhibit tumorigenesis at the initiation, promotion, and progression stages in different animal models. The anti-proliferative effects of tea polyphenols may be a key mechanism, especially in the NNK-induced lung tumorigenesis model with mice. Studies with cell lines have demonstrated that tea polyphenols inhibit cell proliferation and induce apoptosis. The effective concentrations used in these studies (20-100 microM) are usually higher than those observed in blood and tissues of humans and animals, which are in the low micromolar range. Glucuronide and sulfate conjugated and methylated catechins as well as ring fission products (due to intestinal microflora) have been observed in human plasma and urine. Purified green and black tea polyphenols inhibited the H-ras induced milogen-activated protein kinases, AP-1 activities, and the growth of 30.7b Ras 12 and BES21 cells. Among the catechins, both the galloyl structure on the B ring and the gallate moiety are important for the inhibition. Both (-)-epigallocatechin-3-gallate and theaflavin-3,3'-digallate inhibited the phosphorylation of c-jun and p44/42 (ERK 1/2). More mechanistic and human studies in these areas will help us to understand the possible inhibitory action of tea against carcinogenesis in humans.  相似文献   

16.
17.
This study investigated the individual and combined effects of beta-carotene with a common flavonoid (naringin, quercetin or rutin) on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-related carcinogen in human. A human lung cancer cell line, A549, was pre-incubated with beta-carotene, a flavonoid, or both for 1h followed by incubation with NNK for 4 h. Then, we determined DNA strand breaks and the level of 7-methylguanine (7-mGua), a product of NNK metabolism by cytochrome P450 (CYP). We showed that beta-carotene at 20 microM significantly enhanced NNK-induced DNA strand breaks and 7-mGua levels by 90% (p < 0.05) and 70% (p < 0.05), respectively, and that the effect of beta-carotene was associated with an increased metabolism of NNK by CYP because the concomitant addition of 1-aminobenzotriazole, a CYP inhibitor, with beta-carotene to cells strongly inhibited NNK-induced DNA strand breaks. In contrast to beta-carotene, incubation of cells with naringin, quercetin or rutin added at 23 microM led to significant inhibition of NNK-induced DNA strand breaks, and the effect was in the order of quercetin > naringin > rutin. However, these flavonoids did not significantly affect the level of 7-mGua induced by NNK. Co-incubation of beta-carotene with any of these flavonoids significantly inhibited the enhancing effect of beta-carotene on NNK-induced DNA strand breaks; the effects of flavonoids were dose-dependent and were also in the order of quercetin > naringin > rutin. Co-incubation of beta-carotene with any of these flavonoids also significantly inhibited the loss of beta-carotene incorporated into the cells, and the effects of the flavonoids were also in the order of quercetin > naringin > rutin. The protective effects of these flavonoids may be attributed to their antioxidant activities because they significantly decreased intracellular ROS, and the effects were also in the order of quercetin > naringin > rutin. These in vitro results suggest that a combination of beta-carotene with naringin, rutin, or quercetin may increase the safety of beta-carotene.  相似文献   

18.
19.
DNA repair status plays a major role in mutagenesis, carcinogenesis and resistance to genotoxic agents. Because DNA repair processes involve multiple enzymatic steps, understanding cellular DNA repair status has required several assay procedures. We have developed a novel in vitro assay that allows quantitative measurement of alkylation repair via O6-methylguanine DNA methyltransferase (MGMT) and base excision repair (BER) involving methylpurine DNA glycosylase (MPG), human 8-oxoguanine DNA glycosylase (hOGG1) and yeast and human abasic endonuclease (APN1 and APE/ref-1, respectively) from a single cell extract. This approach involves preparation of cell extracts in a common buffer in which all of the DNA repair proteins are active and the use of fluorometrically labeled oligonucleotide substrates containing DNA lesions specific to each repair protein. This method enables methylation and BER capacities to be determined rapidly from a small amount of starting sample. In addition, the stability of the fluorometric oligonucleotides precludes the substrate variability caused by continual radiolabeling. In this report this technique was applied to human breast carcinoma MDA-MB231 cells overexpressing human MPG in order to assess whether up-regulation of the initial step in BER alters the activity of selected other BER (hOGG1 and APE/ref-1) or direct reversal (MGMT) repair activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号