首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
The virulence of a pathogen can vary strongly through time. While cyclical variation in virulence is regularly observed, directional shifts in virulence are less commonly observed and are typically associated with decreasing virulence of biological control agents through coevolution. It is increasingly appreciated, however, that spatial effects can lead to evolutionary trajectories that differ from standard expectations. One such possibility is that, as a pathogen spreads through a naive host population, its virulence increases on the invasion front. In Central America, there is compelling evidence for the recent spread of pathogenic Batrachochytrium dendrobatidis (Bd) and for its strong impact on amphibian populations. Here, we re-examine data on Bd prevalence and amphibian population decline across 13 sites from southern Mexico through Central America, and show that, in the initial phases of the Bd invasion, amphibian population decline lagged approximately 9 years behind the arrival of the pathogen, but that this lag diminished markedly over time. In total, our analysis suggests an increase in Bd virulence as it spread southwards, a pattern consistent with rapid evolution of increased virulence on Bd''s invading front. The impact of Bd on amphibians might therefore be driven by rapid evolution in addition to more proximate environmental drivers.  相似文献   

2.
Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.  相似文献   

3.
Disease can be an important driver of host population dynamics and epizootics can cause severe host population declines. Batrachochytrium dendrobatidis (Bd), the pathogen causing amphibian chytridiomycosis, may occur epizootically or enzootically and can harm amphibian populations in many ways. While effects of Bd epizootics are well documented, the effects of enzootic Bd have rarely been described. We used a state-space model that accounts for observation error to test whether population trends of a species highly susceptible to Bd, the midwife toad Alytes obstetricans, are negatively affected by the enzootic presence of the pathogen. Unexpectedly, Bd had no negative effect on population growth rates from 2002-2008. This suggests that negative effects of disease on individuals do not necessarily translate into negative effects at the population level. Populations of amphibian species that are susceptible to the emerging disease chytridiomycosis can persist despite the enzootic presence of the pathogen under current environmental conditions.  相似文献   

4.
Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, Batrachochytrium dendrobatidis (Bd). We used Random Forest, a machine learning approach, to identify species-level characteristics that may be related to susceptibility to Bd. Our results suggest that body size at maturity, aspects of egg laying behavior, taxonomic order and family, and reliance on water are good predictors of documented infection for species in the continental United States. These results suggest that, whereas local-scale environmental variables are important to the spread of Bd, species-level characteristics may also influence susceptibility to Bd. The relationships identified in this study suggest future experimental tests, and may target species for conservation efforts.  相似文献   

5.
6.
The international amphibian trade is implicated in the emergence and spread of the amphibian fungal disease chytridiomycosis, which has resulted in amphibian declines and extinctions globally. The establishment of the causal pathogen, Batrachochytrium dendrobatidis (Bd), in the UK could negatively affect the survival of native amphibian populations. In recognition of the ongoing threat that it poses to amphibians, Bd was recently included in the World Organisation for Animal Health Aquatic Animal Health Code, and therefore is in the list of international notifiable diseases. Using standardised risk analysis guidelines, we investigated the likelihood that Bd would be introduced to and become established in wild amphibians in the UK through the importation of live amphibians. We obtained data on the volume and origin of the amphibian trade entering the UK and detected Bd infection in amphibians being imported for the pet and private collection trade and also in amphibians already held in captive pet, laboratory and zoological collections. We found that current systems for recording amphibian trade into the UK underestimate the volume of non-European Union trade by almost 10-fold. We identified high likelihoods of entry, establishment and spread of Bd in the UK and the resulting major overall impact. Despite uncertainties, we determined that the overall risk estimation for the introduction of Bd to the UK through the importation of live amphibians is high and that risk management measures are required, whilst ensuring that negative effects on legal trade are minimised.  相似文献   

7.
The disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused dramatic amphibian population declines and extinctions in Australia, Central and North America, and Europe. Bd is associated with >200 species extinctions of amphibians, but not all species that become infected are susceptible to the disease. Specifically, Bd has rapidly emerged in some areas of the world, such as in Australia, USA, and throughout Central and South America, causing population and species collapse. The mechanism behind the rapid global emergence of the disease is poorly understood, in part due to an incomplete picture of the global distribution of Bd. At present, there is a considerable amount of geographic bias in survey effort for Bd, with Asia being the most neglected continent. To date, Bd surveys have been published for few Asian countries, and infected amphibians have been reported only from Indonesia, South Korea, China and Japan. Thus far, there have been no substantiated reports of enigmatic or suspected disease-caused population declines of the kind that has been attributed to Bd in other areas. In order to gain a more detailed picture of the distribution of Bd in Asia, we undertook a widespread, opportunistic survey of over 3,000 amphibians for Bd throughout Asia and adjoining Papua New Guinea. Survey sites spanned 15 countries, approximately 36° latitude, 111° longitude, and over 2000 m in elevation. Bd prevalence was very low throughout our survey area (2.35% overall) and infected animals were not clumped as would be expected in epizootic events. This suggests that Bd is either newly emerging in Asia, endemic at low prevalence, or that some other ecological factor is preventing Bd from fully invading Asian amphibians. The current observed pattern in Asia differs from that in many other parts of the world.  相似文献   

8.
The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.  相似文献   

9.
Infectious disease and amphibian population declines   总被引:10,自引:0,他引:10  
Abstract. A series of recent papers have implicated pathogens and parasites in amphibian population declines. Here, we review evidence on the link between infectious disease and amphibian population declines. We conclude that available data provide the clearest link for the fungal disease amphibian chytridiomycosis, although other pathogens are also implicated. We suggest additional experimental and observational data that need to be collected to provide further support that these other pathogens are associated with declines. We suggest that, in common with many emerging infectious diseases (EIDs) of humans, domestic animals and other wildlife species, emergence of chytridiomycosis may be driven by anthropogenic introduction (pathogen pollution). Finally, we review a number of recent advances in the host–parasite ecology of chytridiomycosis that help explain its emergence and impact.  相似文献   

10.
Probiotic therapy through bioaugmentation is a feasible disease mitigation strategy based on growing evidence that microbes contribute to host defences of plants and animals. Amphibians are currently threatened by the rapid global spread of the pathogen, Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis. Bioaugmentation of locally occurring protective bacteria on amphibians has mitigated this disease effectively in laboratory trials and one recent field trial. Areas still naïve to Bd provide an opportunity for conservationists to proactively implement probiotic strategies to prevent further amphibian declines. In areas where Bd is endemic, bioaugmentation can facilitate repatriation of susceptible amphibians currently maintained in assurance colonies. Here, we synthesise the current research in amphibian microbial ecology and bioaugmentation to identify characteristics of effective probiotics in relation to their interactions with Bd, their host, other resident microbes and the environment. To target at‐risk species and amphibian communities, we develop sampling strategies and filtering protocols that result in probiotics that inhibit Bd under ecologically relevant conditions and persist on susceptible amphibians. This filtering tool can be used proactively to guide amphibian disease mitigation and can be extended to other taxa threatened by emerging infectious diseases.  相似文献   

11.
The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused declines of many amphibian populations, yet the full course of the epizootic has rarely been observed in wild populations. We determined effects of elevation, habitat, and aquatic index (AI) on prevalence of infection among Panamanian amphibians sampled along 2 elevational transects. Amphibian populations on the Santa Fé transect (SFT) had declined in 2002, while those on the El Copé transect (ECT) were healthy until September 2004. In 2004 we sampled Bd along both transects, surveying the SFT 2 yr after decline, and surveying the ECT 4 mo prior to the arrival of Bd, during the epizootic, and 2 mo later. Overall prevalence of Bd along the ECT increased from 0.0 (95% CI 0.00-0.0003) to 0.51 (95% CI 0.48-0.55) over a 3 mo period, accompanied by significant decreases in amphibian abundance and species richness in all habitats. Prevalence of infection on the ECT was highest along riparian transects and at higher elevations, but not among levels of AI. Prevalence of infection on the SFT was highest in pool transects, and at higher elevations, but not among levels of AI. Riparian amphibian abundance and species richness also declined at SFT following detection of Bd in 2002. Variation among species, microenvironmental conditions, and the length of coexistence with Bd may contribute to observed differences in prevalence of Bd and in population response.  相似文献   

12.
Spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, has resulted in the extinction of frogs, but the distribution of Bd is incompletely known. We trialled the survey protocol for Bd by attempting to systematically map its distribution in Queensland, Australia. Bd was easily detected in known infected areas, such as the Wet Tropics and South East Queensland. It was not detected in bioregions adjacent to, but inland from or to the north of, infected regions: Einasleigh Uplands and Cape York adjacent to the infected Wet Tropics; and Brigalow Belt South adjacent to the infected South East Queensland bioregion. These regions where Bd was not detected have bordered infected regions for between 15 yr (in northern Queensland) and 30 yr (in southern Queensland), and so they define the geographical limits of Bd with regard to the long-term environmental conditions in Queensland. The Gulf Plains, a bioregion distant from infected bioregions, was also negative. Bd was confined to rainforest and bordering habitats, such as wet eucalypt forests. Infections were largely confined to permanent water-associated species, consistent with this being an important cause of this group having the greatest declines. Our data supports biogeographic climatic models that show much of inland and northern Australia to be too hot and dry to support Bd. As there is limited opportunity for Bd to spread further in Queensland, the priority for management is reducing the impact of Bd in affected populations and assisting frogs to disperse into their former distributions. Given that the survey protocol has been applied successfully in Australia it may be useful for mapping the distribution of Bd in other parts of the world.  相似文献   

13.
Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial–fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.  相似文献   

14.
Chytridiomycosis, an infectious disease of amphibians, is caused by the fungus Batrachochytrium dendrobatidis (Bd) and has been linked to declining amphibian populations worldwide. The susceptibility of amphibians to chytridiomycosis-induced population declines is potentially influenced by many factors, including environmental characteristics, differences among host species and the growth of the pathogen itself. We investigated the effects of elevation and breeding habitat on Bd prevalence and individual infection intensity (zoospore loads) in 3 anuran assemblages of the Atlantic Coastal Forest of Brazil. Bd infection intensity was strongly influenced by elevation and breeding habitat, but we found no evidence of an interaction between those 2 variables in explaining the number of zoospores sampled from individual frogs. In contrast, Bd infection odds were predicted by elevation and by an interaction between elevation and breeding habitat, such that frogs had a higher probability of Bd infection in lotic habitats at low elevations. Our results indicate that Bd persists across a wide variety of habitats and elevations in the Atlantic Coastal Forest. Prevalence and infection intensity of Bd are highest at high elevations where overall environmental conditions for Bd are most favorable. In addition, at low elevations amphibian host habitat choice is also an important determinant of infection. Our study highlights the need to investigate interacting variables of host ecology and the environment simultaneously.  相似文献   

15.
The emerging infectious disease chytridiomycosis, caused by the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is implicated in widespread population declines, extirpations, and extinctions of amphibians throughout the world. In the Neotropics, most amphibian declines have occurred in cool mid‐ to high‐elevation sites (> 400 m asl), and it is hypothesized that high temperatures limit the growth of Bd in lowland tropical sites, despite few data available on the distribution of Bd in lowland forests. Here, we report the results of a 12‐mo pathogen surveillance program for three common species of frogs at a warm lowland site in northeastern Costa Rica. We combine standard non‐invasive skin swabbing techniques with a quantitative polymerase chain reaction assay to analyze the infection prevalence and Bd load across a 1‐yr period. Our data indicate an overall Bd infection rate of 6.1 percent, but prevalence varies from < 5 percent in warmer months to a peak of 34.7 percent in the coolest months of the year. Despite very little seasonal variation in temperature (< 4°C), our data indicate strong seasonal variation in the prevalence of Bd, with highest prevalence of infection in months with coolest air temperatures. While it has been suggested that Bd is primarily a riparian fungus, we find no difference in prevalence of infection among our species despite considerable differences in affiliation of these species with water. Our study provides further evidence that infection by Bd is regulated by temperature and shows that warm temperatures in lowland forests may restrict, but not prevent, infection by Bd.  相似文献   

16.

The emerging amphibian disease, Batrachochytrium dendrobatidis (Bd), is driving population declines worldwide and even species extinctions in Australia, South and Central America. In order to mitigate effects of Bd on amphibian populations, high-exposed areas should be identified at the local scale and effective conservation measures should be planned at the national level. This assessment is actually lacking in the Mediterranean basin, and in particular in Italy, one of the most relevant amphibian diversity hotspots in the entire region. In this study, we reviewed the available information on Bd in Italy, and conducted a 5-year molecular screening on 1274 individual skin swabs belonging to 18 species. Overall, we found presence of Bd in 13 species and in a total of 56 known occurrence locations for peninsular Italy and Sardinia. We used these occurrence locations and climate data to model habitat suitability of Bd for current and future climatic scenarios. We then employed electric circuit theory to model landscape permeability to the diffusion of Bd, using a resistance map. With this procedure, we were able to model, for the first time, the diffusion pathways of Bd at the landscape scale, characterising the main future pathways towards areas with a high probability of Bd occurrence. Thus, we identified six national protected areas that will become pivotal for a nationally-based strategic plan in order to monitor, mitigate and possibly contrast Bd diffusion in Italy.

  相似文献   

17.
Since the early 1980s, the southern corroboree frog Pseudophryne corroboree and northern corroboree frog P. pengilleyi have been in a state of decline from their sub-alpine and high montane bog environments on the southern tablelands of New South Wales, Australia. To date, there has been no adequate explanation as to what is causing the decline of these species. We investigated the possibility that a pathogen associated with other recent frog declines in Australia, the amphibian chytrid fungus Batrachochytrium dendrobatidis, may have been implicated in the decline of the corroboree frogs. We used histology of toe material and real-time PCR of skin swabs to investigate the presence and infection rates with B. dendrobatidis in historic and extant populations of both corroboree frog species. Using histology, we did not detect any B. dendrobatidis infections in corroboree frog populations prior to their decline. However, using the same technique, high rates of infection were observed in populations of both species after the onset of substantial population declines. The real-time PCR screening of skin swabs identified high overall infection rates in extant populations of P. corroboree (between 44 and 59%), while significantly lower rates of infection were observed in low-altitude P. pengilleyi populations (14%). These results suggest that the initial and continued decline of the corroboree frogs may well be attributed to the emergence of B. dendrobatidis in populations of these species.  相似文献   

18.
While disease‐induced extinction is generally considered rare, a number of recently emerging infectious diseases with load‐dependent pathology have led to extinction in wildlife populations. Transmission is a critical factor affecting disease‐induced extinction, but the relative importance of transmission compared to load‐dependent host resistance and tolerance is currently unknown. Using a combination of models and experiments on an amphibian species suffering extirpations from the fungal pathogen Batrachochytrium dendrobatidis (Bd), we show that while transmission from an environmental Bd reservoir increased the ability of Bd to invade an amphibian population and the extinction risk of that population, Bd‐induced extinction dynamics were far more sensitive to host resistance and tolerance than to Bd transmission. We demonstrate that this is a general result for load‐dependent pathogens, where non‐linear resistance and tolerance functions can interact such that small changes in these functions lead to drastic changes in extinction dynamics.  相似文献   

19.
1. Anthropogenic effects have propelled us into what many have described as the sixth mass extinction, and amphibians are among the most affected groups. The causes of global amphibian population declines and extinctions are varied, complex and context‐dependent and may involve multiple stressors. However, experimental studies examining multiple factors contributing to amphibian population declines are rare. 2. Using outdoor mesocosms containing zooplankton, phytoplankton, periphyton and tadpoles, we conducted a 2 × 2 × 3 factorial experiment that examined the separate and combined effects of an insecticide and the fungal pathogen Batrachochytrium dendrobatidis (Bd) on three different assemblages of larval pacific treefrogs (Pseudacris regilla) and Cascades frogs (Rana cascadae). 3. Larval amphibian growth and development were affected by carbaryl and the amphibian assemblage treatment, but only minimally by Bd. Carbaryl delayed metamorphosis in both amphibian species and increased the growth rate of P. regilla. Carbaryl also reduced cladoceran abundance, which, in turn, had positive effects on phytoplankton abundance but no effect on periphyton biomass. Substituting 20 intraspecific competitors with 20 interspecific competitors decreased the larval period but not the growth rate of P. regilla. In contrast, substituting 20 intraspecific competitors with 20 interspecific competitors had no effect on R. cascadae. Results of real‐time quantitative polymerase chain reaction (qPCR) analysis confirmed infection of Bd‐exposed animals, but exposure to Bd had no effects on either species in univariate analyses, although it had significant or nearly significant effects in several multivariate analyses. In short, we found no interactive effects among the treatments on amphibian growth and development. 4. We encourage future research on the interactive effects of pesticides and pathogens on amphibian communities.  相似文献   

20.
Ten years after the first discovery of the chytrid pathogen Batrachochytrium dendrobatidis (Bd), the catastrophic effect of Bd on wild amphibian populations is indisputable. However, a number of persistent questions remain about Bd's origin and mechanisms of pathogenicity. Here we discuss the promise of genetic and genomic tools for answering these previously intractable questions about the biology and evolutionary history of Bd. Full genomes of 2 Bd strains have recently been sequenced, and Bd research on this species using population genetics, phylogenetics, proteomics, comparative genomics and functional genomics is already underway. We review some of the insights gleaned from the first studies using these genome-scale approaches focusing particularly on Bd's genomic architecture, patterns of global genetic variation, virulence factors and genetic interactions with hosts. Avenues of future research promise to be particularly fruitful and highlight the need for integrative studies that unite genetic, ecological and spatial data in both Bd and its amphibian hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号