首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Media containing xylose and/or glucose were tested utilizing Zymomonas mobilis or Saccharomyces diastaticus and Pichia stipitis. The best fermentation results were obtained in separated glucose (180 g/litre) and xylose (80 g/litre) fermentations utilizing Zymomonas mobilis and Pichia stipitis strains, respectively. In these conditions, the maximum ethanol concentrations achieved were 86·2 g/litre and 29 g/litre, respectively. The complete conversion of a glucose and xylose mixture (50 g/litre) was obtained using a respiratory deficient mutant of Saccharomyces diastaticus co-cultivated with Pichia stipitis in continuous culture. Using the co-culture process, the maximum ethanol concentration was 21·5 g/litre (Yp/s=0·45 g/g) and the maximum volumetric ethanol productivity was 4·3 g/(litre × h).  相似文献   

3.
The use of autoregressive modelling has acquired great importance in time series analysis and in principle it may also be applicable in the spectral analysis of point processes with similar advantages over the nonparametric approach. Most of the methods used for autoregressive spectral analysis require positive semidefinite estimates for the covariance function, while current methods for the estimation of the covariance density function of a point process given a realization over the interval [0,T] do not guarantee a positive semidefinite estimate. This paper discusses methods for the estimation of the covariance density and conditional intensity function of point processes and present alternative computational efficient estimation algorithms leading always to positive semidefinite estimates, therefore adequate for autoregressive spectral analysis. Autoregressive spectral modelling of point processes from Yule-Walker type equations and Levinson recursion combined with the minimum AIC or CAT principle is illustrated with neurobiological data.  相似文献   

4.
A high cell density culture system for the anchorage dependent CHO cells was developed based on the combination ofin situ removal of ammonium ion and microcarrier culture system, and semi-fed-batch feeding of glucose and glutamine was employed to the developed culture system. The glass bead was selected as an optimum microcarrier in terms of cell growth. An ammonium ion selective zeolite, Phillipsite-Gismondine, was packed in a dialysis membrane and equipped on the agitator of spinner reactor forin situ removal of ammonium ion. The semi-fed-batch operation was employed to the novel culture system for the high density cell culture, and the results showed the cell growth was improved by 32% and tPA productivity by 250%.  相似文献   

5.
The specific growth rate of the biomass, a very important parameter of almost every fermentation process, cannot be measured directly or estimated from related variables, as the concentrations of biomass, substrates, or products, due to the lack of reliable and cheap sensors. In this article a stable adaptive estimator of the specific growth rate is designed for those aerobic processes where the measurement of the oxygen uptake rate is available on-line. This particular approach can be applied also for other reaction rates if the model of the process satisfies some very general assumptions, which make the dynamics of the measured reaction rate a nonlinear function only of two unknown parameters, the specific growth rate and its time derivative. With respect to a previous similar approach, the new estimator has one additional parameter and a different nonlinear structure. From the analysis of the dynamics of the estimation error, a tuning criterion is derived, by which the two different algorithms can be compared under similar conditions. Simulation results show a good performance of both estimators for various kind of processes and disturbances. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
A new bioreactor design that allows continuous perfusion cultivation of plant cell suspensions is described in this paper. This design incorporates an internal cell settling zone with an external-loop air-lift bioreactor. The settling zone is created by inserting a baffle plate into the upper portion of the downcomer. Using this bioreactor, Anchusa officinalis suspension culture was cultivated to a cell density of 27.2 g l−1 DW in 14 days at a perfusion rate of 0.123 per day. The maximum total extracellular protein concentration attained 1.11 g l−1. Complete cell retention was achieved throughout the culture during which the maximum packed cell volume (PCV) exceeded 80%. In comparison, the maximum cell density and extracellular protein concentration in the batch culture were 12.6 g l−1 DW and 0.47 g l−1, respectively. SDS-PAGE of the extracellular protein samples revealed two major bands at 58 and 47 kDa, each accounted for approximately 45% of the total secreted proteins.  相似文献   

7.
Models of cell processes can be particularly useful in simulating, optimizing and controlling cell culture systems. Models reported in the literature are of various degrees of biological structure and mathematical complexity and describe cell growth, death, metabolism, and product formation, alone or in combination with each other. This paper reviews these modeling efforts, discusses their results, potential and limitations, and identifies areas where future modeling studies may be especially valuable.Key words  相似文献   

8.
Bacillus subtilis BD170, harboring a plasmid pGT44[phyC] carrying the phytase gene (phyC) and a phosphate-depletion inducible pst-promoter, was grown in a 2 l bioreactor. Using a controlled feeding of glucose, high cell densities of 32 and 56 g dry cell weight l–1 were achieved with peptone and yeast extract, respectively, as the complex nitrogen sources in a semi-defined growth medium. The fed-batch protocol was applied to production of recombinant phytase and a high extracellular phytase activity (48 U ml–1) was reached with peptone. Although the yeast extract feeding resulted in a higher cell density, it was unsuitable as a medium component for phytase expression due to its relatively high phosphate content.  相似文献   

9.
Ren  Yilin  Ling  Chen  Hajnal  Ivan  Wu  Qiong  Chen  Guo-Qiang 《Applied microbiology and biotechnology》2018,102(10):4499-4510
Applied Microbiology and Biotechnology - High-cell-density cultivation is an effective way to improve the productivity of microbial fermentations and in turn reduce the cost of the final products,...  相似文献   

10.
Optimal medium use for continuous high density perfusion processes   总被引:1,自引:0,他引:1  
For maintenance of high cell density in continuous perfusion processes not only feeding with substrates but also removal of inhibitors and toxic waste products are of special interest. High perfusion rates cause large volumes of product containing medium which have to be processed in product isolation. In order to minimize these volumes concentrated feed solutions of optimized medium are used. On the other hand, such media may cause high concentrations of toxic or inhibitory metabolites which can negatively influence cell growth and product formation. Especially, if the spent medium (or special parts of it) is used again after product isolation, the removal or even better the control of inhibitor production is of highest importance. We have developed a continuous fermentation concept and system (continuous medium cycle bioreactor, cMCB) in which both limitation and inhibition effects can be generated to identify special substances as limiting or inhibitory components. With the results from those experiments it was possible to lower the total perfusion rate during serum-free perfusion cultures of hybridoma cells and to obtain an optimal substrate utilization. The advantages for decreasing the production costs (for media, special supplements and product isolation) are obvious. The other aim of this study was to identify secreted metabolic waste products as inhibitor or toxic metabolite.  相似文献   

11.
Phycocyanin production by high cell density cultivation of Spirulina platensis in batch and fed-batch modes in 3.7-L bioreactors with a programmed stepwise increase in light intensity program was investigated. The results showed that the cell density in fed-batch culture (10.2 g L−1) was 4.29-fold that in batch culture (2.38 g L−1), and the total phycocyanin production in the fed-batch culture (0.795 g L−1) was 3.05-fold that in the batch culture (0.261 g L−1). An unstructured kinetic model to describe the microalga culture system including cell growth, phycocyanin formation, as well as glucose consumption was proposed. The data fitted the models well (r 2 > 0.99). Furthermore, based on the kinetic models, the potential effects of light limitation and photoinhibition on cell growth and phycocyanin formation can be examined in depth. The models demonstrated that the optimal light intensity for mixotrophic growth of Spirulina platensis in batch or fed-batch cultures using a 3.7-L bioreactor was 80160 μE m−2 s−1, and the stepwise increase in light intensity can be replaced by a constant light intensity mode. Received 28 July 1998/ Accepted in revised form 8 October 1998  相似文献   

12.
High cell density cultivation of Haematococcus pluvialis for astaxanthin production was carried out in batch and fed-batch modes in 3.7-L bioreactors with stepwise increased light intensity control mode. A high cell density of 2.65 g L−1 (batch culture) or 2.74 g L−1 (fed-batch culture) was obtained, and total astaxanthin production in the fed-batch culture (64.36 mg L−1) was about 20.5% higher than in the batch culture (53.43 mg L−1). An unstructured kinetic model to describe the microalga culture system including cell growth, astaxanthin formation, as well as sodium acetate consumption was proposed. Good agreement was found between the model predictions and experimental data. The models demonstrated that the optimal light intensity for mixotrophic growth of H. pluvialis in batch or fed-batch cultures in a 3.7-L bioreactor was 90–360 μmol m−2 s−1, and that the stepwise increased light intensity mode could be replaced by a constant light intensity mode. Received 24 December 1998/ Accepted in revised form 23 April 1999  相似文献   

13.
A continuous acetone-butanol-ethanol (ABE) production system with high cell density obtained by cell-recycling of Clostridium saccharoperbutylacetonicum N1-4 has been studied. In conventional continuous culture of ABE without cell-recycling, the cell concentration was below 5.2 g l(-1) and the maximum ABE productivity was only 1.85 g l(-1)h(-1) at a dilution rate of 0.20 h(-1). To obtain a high cell density at a faster rate, we concentrated the solventogenic cells of the broth 10 times by membrane filtration and were able to obtain approximately 20 g l(-1) of active cells after only 12h of cultivation. Continuous culture with cell-recycling was then started, and the cell concentration increased gradually through cultivation to a value greater than 100 g l(-1). The maximum ABE productivity of 11.0 gl(-1)h(-1) was obtained at a dilution rate of 0.85 h(-1). However, a cell concentration greater than 100 gl(-1) resulted in heavy bubbling and broth outflow, which made it impossible to carry out continuous culture. Therefore, to maintain a stable cell concentration, cell-bleeding was performed together with cell-recycling. At dilution rates of 0.11h(-1) and above for cell-bleeding, continuous culture with cell-recycling could be operated for more than 200 h without strain degeneration and the overall volumetric ABE productivity of 7.55 gl(-1)h(-1) was achieved at an ABE concentration of 8.58 gl(-1).  相似文献   

14.
Conclusion At the 1989 annual meeting of the U.S. Tissue Culture Associations, Ricahrd am, a leading investigator in the serum-free nutrient requirements of cultured cells, commented on the process of medium development. He noted that a survey of major media manufacturers revealed that, among the top selling mammalian cell culture media formulations, most were nearly thirty years old.This commentary is noteworthy considering the tremendous changes in cell culture understanding and derived applications which have emerged over these three decades. Fastidious cell types relatively unknown to investigators of the 1950s and 1960s are now being cultivated in defined, serum-free environments. Culture environments range from limiting dilution clonal recoveries to maintenance cultures approaching tissue densities. While research applications continue to predominate, applications of cell culture have expanded to the engineered production of biopharmaceuticals, to replacement of animal models for toxicology testing, and to the preservation, activation and expansion of human cells, tissues and organs.It is likely that future nutrient medium development will be predicated upon the design of a minimal number of defined formulations of relatively generic utility to a broad class of cell types. Analytical techniques derived from those described herein will be exploited in the user laboratory and in collaboration with the supplier to optimize the nutrient composition for the desired biological response.  相似文献   

15.
16.
Summary The production of a flocculent strain ofLactobacillus plantarum was performed in a high cell density reactor: a fluidized bed reactor (FBR) with a settler and an external cell recirculation. Two variables were assessed, the recirculation rate (R) and the dilution rate (D). The effect of the latter is much more important than the effect of the former in ensuring a quick start up in the flocculation process. The cell volumetric productivities obtained with this system increase directly with dilution rate and recirculation rate. The values of cell volumetric productivities obtained are considerably higher than those obtained in continuous stirred tank reactors (CSTR) and much higher than in batch reactors.  相似文献   

17.
18.
Fed-batch techniques were employed to obtain high cell density cultures (92-100 g DCW/L) of Escherichia coli strain X90 producing a recombinant serine protease, rat anionic trypsin, secreted to the periplasm. The specific growth rate was controlled to minimize growth-inhibiting acetate formation by utilizing an exponential feeding profile determined from mass balance equation. The volumetric yield of recombinant rat anionic trypsin was 56 mg/L, and the final cell density was 92 g DCW/L when the culture was induced in the late logarithmic phase. However, when the culture was induced in the early logarithmic phase, the volumetric yield was 13 mg/L and the final cell density was 14 g DCW/L. Thus, the induction timing is shown to have a significant effect on the final cell density as well as the overall volumetric yield of the recombinant protease. (c) 1993 Wiley & Sons, Inc.  相似文献   

19.
The purpose of the study was to investigate the rabies virus multiplication in Vero cell cultures performed on porous microcarriers, MCs (cellulose-Cytopore and gelatin-Cultispher G), which provide higher available surface area compared with solid (nonporous) MCs (DEAE-Cytodex 1). In a set of experiments performed at the same MC concentration (MCs per milliliter), cell densities regularly obtained in porous MC cultures were comparable, but almost twice as high as those in solid MC cultures. In addition, 41.1 +/- 3.9-, 35.2 +/- 2-, and 19.6 +/- 5.8-fold increases in cell concentration, relative to the initial cell number, along with maximum rabies virus titers of 6.3 +/- 0.3 x 10(4), 5 +/- 0.1 x 10(4), and 4.3 +/- 0.2 x 10(4) FFD(50)/mL were observed in Cytopore, Cultispher G, and Cytodex 1 MC cultures, respectively. When higher concentrations of MCs were employed, lower performances of virus production and MC-cell occupation (cells per MC or cells per square millimeter) were observed. Cell attachment to MCs was shown to be faster for Cytopore MCs and Cytodex 1 MCs than for Cultispher G MCs. Concerning the kinetics of cell multiplication on MCs, exponential cell growth, at similar specific cell growth rates, took place on Cytopore, Cultispher G, and Cytodex 1 MCs. In addition, cell densities as high as 2.1 +/- 0.2 x 10(6) cells/mL on Cytopore MCs, 1.8 +/- 0.1 x 10(6) cells/mL on Cultispher G MCs, and 1 +/- 0.3 x 10(6) cells/mL on Cytodex 1 MCs were regularly obtained in batch cultures. Optical as well as scanning and transmission electron microscopy studies carried out to analyze MC structure, MC cell occupation, and cell permissivity to virus infection demonstrated that there was uniform cell distribution in the external and internal areas of the MCs, suggesting an efficiency of virus synthesis. Our results indicate the usefulness of these supports for rabies virus antigen production, as well as possibilities for further optimization.  相似文献   

20.
重组毕赤酵母高密度发酵生产内切型纤维素酶的条件优化   总被引:1,自引:0,他引:1  
为优化内切型纤维素酶高密度发酵工艺条件,在7.5L发酵罐高密度发酵条件下,研究内切型纤维素酶表达量以及毕赤酵母胞外蛋白酶合成水平的影响因素。研究表明:经340mL甘油补料发酵后,在甲醇诱导阶段,pH为5.0,温度为25℃,利用甲醇检测流加控制器控制甲醇体积分数为0.33%~0.35%时,EGI表达量可达421.1IU/mL,比采用固定甲醇流加速率的发酵方法提高了1.49倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号