首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Altered brain development is evident in children born very preterm (24–32 weeks gestational age), including reduction in gray and white matter volumes, and thinner cortex, from infancy to adolescence compared to term-born peers. However, many questions remain regarding the etiology. Infants born very preterm are exposed to repeated procedural pain-related stress during a period of very rapid brain development. In this vulnerable population, we have previously found that neonatal pain-related stress is associated with atypical brain development from birth to term-equivalent age. Our present aim was to evaluate whether neonatal pain-related stress (adjusted for clinical confounders of prematurity) is associated with altered cortical thickness in very preterm children at school age.

Methods

42 right-handed children born very preterm (24–32 weeks gestational age) followed longitudinally from birth underwent 3-D T1 MRI neuroimaging at mean age 7.9 yrs. Children with severe brain injury and major motor/sensory/cognitive impairment were excluded. Regional cortical thickness was calculated using custom developed software utilizing FreeSurfer segmentation data. The association between neonatal pain-related stress (defined as the number of skin-breaking procedures) accounting for clinical confounders (gestational age, illness severity, infection, mechanical ventilation, surgeries, and morphine exposure), was examined in relation to cortical thickness using constrained principal component analysis followed by generalized linear modeling.

Results

After correcting for multiple comparisons and adjusting for neonatal clinical factors, greater neonatal pain-related stress was associated with significantly thinner cortex in 21/66 cerebral regions (p-values ranged from 0.00001 to 0.014), predominately in the frontal and parietal lobes.

Conclusions

In very preterm children without major sensory, motor or cognitive impairments, neonatal pain-related stress appears to be associated with thinner cortex in multiple regions at school age, independent of other neonatal risk factors.  相似文献   

2.

Background and Purpose

With the increased use of MRI in preterm infants, punctate white matter lesions (PWML) are more often recognized. The aim of this study was to describe the incidence and characteristics of these lesions as well as short-term outcome in a cohort of serially scanned preterm infants, using both conventional imaging, diffusion (DWI) and susceptibility (SWI) weighted imaging.

Materials and Methods

112 preterm infants with 2 MRIs in the neonatal period, with evidence of punctate white matter lesions, were included. Appearance, lesion load, location, and abnormalities on DWI and SWI were scored and outcome data were collected.

Results

Different patterns of punctate white matter lesions did appear: a linear appearance associated with signal loss on SWI, and a cluster appearance associated with restricted diffusion on DWI on the first MRI. Cluster and mixed lesions on the first scan changed in appearance in over 50% on the second scan, whereas linear lesions generally kept their appearance. Lesions were only visible on the early scan in 33%, and were only seen at term equivalent age in 20%. Nine infants developed cerebral palsy, due to additional overt white matter lesions in six.

Conclusion

Two patterns of punctate white matter lesions were identified: one with loss of signal on SWI in a linear appearance, and the other with DWI lesions with restricted diffusion in a cluster appearance. These different patterns are suggestive of a difference in underlying pathophysiology. To reliably classify PWML in the preterm infant in either pattern, an early MRI with DWI and SWI sequences is required.  相似文献   

3.

Objective

To identify perinatal clinical antecedents of white matter microstructural abnormalities in extremely preterm infants.

Methods

A prospective cohort of extremely preterm infants (N = 86) and healthy term controls (N = 16) underwent diffusion tensor imaging (DTI) at term equivalent age. Region of interest-based measures of white matter microstructure - fractional anisotropy and mean diffusivity - were quantified in seven vulnerable cerebral regions and group differences assessed. In the preterm cohort, multivariable linear regression analyses were conducted to identify independent clinical factors associated with microstructural abnormalities.

Results

Preterm infants had a mean (standard deviation) gestational age of 26.1 (1.7) weeks and birth weight of 824 (182) grams. Compared to term controls, the preterm cohort exhibited widespread microstructural abnormalities in 9 of 14 regional measures. Chorioamnionitis, necrotizing enterocolitis, white matter injury on cranial ultrasound, and increasing duration of mechanical ventilation were adversely correlated with regional microstructure. Conversely, antenatal steroids, female sex, longer duration of caffeine therapy, and greater duration of human milk use were independent favorable factors. White matter injury on cranial ultrasound was associated with a five weeks or greater delayed maturation of the corpus callosum; every additional 10 days of human milk use were associated with a three weeks or greater advanced maturation of the corpus callosum.

Conclusions

Diffusion tensor imaging is sensitive in detecting the widespread cerebral delayed maturation and/or damage increasingly observed in extremely preterm infants. In our cohort, it also aided identification of several previously known or suspected perinatal clinical antecedents of brain injury, aberrant development, and neurodevelopmental impairments.  相似文献   

4.

Background and Purpose

Individuals born very preterm (before 33 weeks of gestation, VPT) are at risk of damage to developing white matter, which may affect later cognition and behaviour.

Methods

We used diffusion tensor MRI (DT-MRI) to assess white matter microstructure (fractional anisotropy; FA) in 80 VPT and 41 term-born individuals (mean age 19.1 years, range 17–22, and 18.5 years, range17–22 years, respectively). VPT individuals were part of a 1982–1984 birth cohort which had been followed up since birth; term individuals were recruited by local press advertisement. General intellectual function, executive function and memory were assessed.

Results

The VPT group had reduced FA in four clusters, and increased FA in four clusters relative to the Term group, involving several association tracts of both hemispheres. Clusters of increased FA were associated with more severe neonatal brain injury in the VPT group. Clusters of reduced FA were associated with lower birth weight and perinatal hypoxia, and with reduced adult cognitive performance in the VPT group only.

Conclusions

Alterations of white matter microstructure persist into adulthood in VPT individuals and are associated with cognitive function.  相似文献   

5.

Introduction

Lacunar lesions (LLs) and white matter lesions (WMLs) affect cognition. We assessed whether lesions located in specific white matter tracts were associated with cognitive performance taking into account total lesion burden.

Methods

Within the Second Manifestations of ARTerial disease Magnetic Resonance (SMART-MR) study, cross-sectional analyses were performed on 516 patients with manifest arterial disease. We applied an assumption-free voxel-based lesion-symptom mapping approach to investigate the relation between LL and WML locations on 1.5 Tesla brain MRI and compound scores of executive functioning, memory and processing speed. Secondly, a multivariable linear regression model was used to relate the regional volume of LLs and WMLs within specific white matter tracts to cognitive functioning.

Results

Voxel-based lesion-symptom mapping identified several clusters of voxels with a significant correlation between WMLs and executive functioning, mostly located within the superior longitudinal fasciculus and anterior thalamic radiation. In the multivariable linear regression model, a statistically significant association was found between regional LL volume within the superior longitudinal fasciculus and anterior thalamic radiation and executive functioning after adjustment for total LL and WML burden.

Conclusion

These findings identify the superior longitudinal fasciculus and anterior thalamic radiation as key anatomical structures in executive functioning and emphasize the role of strategically located vascular lesions in vascular cognitive impairment.  相似文献   

6.

Background

A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients.

Methods

We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures.

Results

Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts.

Conclusion

In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients.  相似文献   

7.

Background

Androgen deprivation therapy (ADT) is a common treatment for non-metastatic, low-risk prostate cancer, but a potential side effect of ADT is impaired brain functioning. Previous work with functional magnetic resonance imaging (MRI) demonstrated altered prefrontal cortical activations in cognitive control, with undetectable changes in behavioral performance. Given the utility of brain imaging in identifying the potentially deleterious effects of ADT on brain functions, the current study examined the effects of ADT on cerebral structures using high resolution MRI and voxel-based morphometry (VBM).

Methods

High resolution T1 weighted image of the whole brain were acquired at baseline and six months after ADT for 12 prostate cancer patients and 12 demographically matched non-exposed control participants imaged at the same time points. Brain images were segmented into gray matter, white matter and cerebral ventricles using the VBM toolbox as implemented in Statistical Parametric Mapping 8.

Results

Compared to baseline scan, prostate cancer patients undergoing ADT showed decreased gray matter volume in frontopolar cortex, dorsolateral prefrontal cortex and primary motor cortex, whereas the non-exposed control participants did not show such changes. In addition, the decrease in gray matter volume of the primary motor cortex showed a significant correlation with longer reaction time to target detection in a working memory task.

Conclusions

ADT can affect cerebral gray matter volumes in prostate cancer patients. If replicated, these results may facilitate future studies of cognitive function and quality of life in men receiving ADT, and can also help clinicians weigh the benefits and risks of hormonal therapy in the treatment of prostate cancer.  相似文献   

8.

Aim

To identify long-term effects of preterm birth and of periventricular leukomalacia (PVL) on cortical thickness (CTh). To study the relationship between CTh and cognitive-behavioral abnormalities.

Methods

We performed brain magnetic resonance imaging on 22 preterm children with PVL, 14 preterm children with no evidence of PVL and 22 full-term peers. T1-weighted images were analyzed with FreeSurfer software. All participants underwent cognitive and behavioral assessments by means of the Wechsler Intelligence Scales for Children-Fourth Edition (WISC-IV) and the Child Behavior Checklist (CBCL).

Results

We did not find global CTh differences between the groups. However, a thinner cortex was found in left postcentral, supramarginal, and caudal middle rostral gyri in preterm children with no evidence of PVL than in the full-term controls, while PVL preterm children showed thicker cortex in right pericalcarine and left rostral middle frontal areas than in preterm children with no evidence of PVL. In the PVL group, internalizing and externalizing scores correlated mainly with CTh in frontal areas. Attentional scores were found to be higher in PVL and correlated with CTh increments in right frontal areas.

Interpretation

The preterm group with no evidence of PVL, when compared with full-term children, showed evidence of a different pattern of regional thinning in the cortical gray matter. In turn, PVL preterm children exhibited atypical increases in CTh that may underlie their prevalent behavioral problems.  相似文献   

9.
LL Zeng  L Liu  Y Liu  H Shen  Y Li  D Hu 《PloS one》2012,7(8):e44248

Objective

To investigate white matter volume abnormalities in patients with major depression and the effects of antidepressant treatment on white matter volume.

Method

Magnetic resonance imaging (MRI) was performed on 32 treatment-naïve depressed patients, 17 recovered patients who had received antidepressant treatment and subsequently achieved clinical recovery and 34 matched controls.

Results

Relative to the healthy controls, the treatment-naïve depressed patients showed increased white matter volumes in the left dorsolateral prefrontal cortex (DLPFC) and left putamen and reduced white matter volumes in the left cerebellum posterior lobe and left inferior parietal lobule. For the treatment-naïve patients, the length in months of the current depressive episode was positively correlated with the white matter volumes in both the left DLPFC and left putamen. In the recovered patients, the differences in white matter volume were no longer statistically significant relative to healthy controls. No significant difference was found in the total white matter volume among the three groups.

Conclusions

This study demonstrates that there were alterations in the white matter volumes of depressed patients, which might disrupt the neural circuits that are involved in emotional and cognitive function and thus contribute to the pathophysiology of depression. The finding of the significant correlations between refractoriness and the white matter volumes in the left DLPFC and left putamen combined with the finding that antidepressant treatment normalized the white matter volume of recovered patients, suggests that a quantitative, structural MRI measurement could act as a potential biomarker in depression therapy for individual subjects.  相似文献   

10.

Objective

Magnetic resonance imaging (MRI) of the brain carried out during the neonatal period shows that 55–80% of extremely preterm infants display white matter diffuse excessive high signal intensity (DEHSI). Our aim was to study differences in developmental outcome at the age of 6.5 years in children born extremely preterm with and without DEHSI.

Study Design

This was a prospective cohort study of 83 children who were born in Stockholm, Sweden, between 2004 and 2007, born at gestational age of < 27 weeks + 0 days and who underwent an MRI scan of their brain at term equivalent age. The outcome measures at 6.5 years included testing 66 children with the modified Touwen neurology examination, the Movement Assessment Battery for Children 2, the Wechsler Intelligence Scale for Children—Fourth Edition, Beery Visual-motor Integration test—Sixth Edition, and the Strengths and Difficulties Questionnaire. Group-wise comparisons were done between children with and without DEHSI using Student t-test, Mann Whitney U test, Chi square test and regression analysis.

Results

DEHSI was detected in 39 (59%) of the 66 children who were assessed at 6.5 years. The presence of DEHSI was not associated with mild neurological dysfunction, scores on M-ABC assessment, cognition, visual-motor integration, or behavior at 6.5 years.

Conclusion

The presence of qualitatively defined DEHSI on neonatal MRI did not prove to be a useful predictor of long-term impairment in children born extremely preterm.  相似文献   

11.

Introduction

We hypothesised that fatigue in rheumatoid arthritis (RA) is related to TNF-alpha induced dysregulation of cerebral blood flow. Our objectives were to assess fatigue, cognitive function and cerebral blood flow before and after initiation of anti-TNF treatment.

Methods

In a pilot study, 15 patients initiating treatment with adalimumab were assessed for fatigue using a visual analogue scale (FACIT-F), cognitive function using a panel of psychometric tests and regional cerebral blood flow using MR perfusion imaging.

Results

Patients improved clinically after anti-TNF therapy in terms of DAS28 and FACIT-F. Furthermore significant improvements were documented in full scale, verbal and performance IQ following therapy. There was a non-significant trend towards reduced cerebral perfusion in both grey and white matter, and fatigue at 3 months correlated with cerebral blood flow in white (p = 0.014) and grey (p = 0.005) matter.

Conclusions

We demonstrate for the first time a significant improvement in cognitive function following effective treatment of RA. Although we observed minor reductions in cerebral blood flow, and a correlation between cerebral blood flow and fatigue, a larger, controlled study would be required to affirm a causal relationship.  相似文献   

12.

Background

Cortical changes associated with cognitive decline in Parkinson''s disease (PD) are not fully explored and require investigations with established diagnostic classification criteria.

Objective

We used MRI source-based morphometry to evaluate specific differences in grey matter volume patterns across 4 groups of subjects: healthy controls (HC), PD with normal cognition (PD-NC), PD with mild cognitive impairment (MCI-PD) and PD with dementia (PDD).

Methods

We examined 151 consecutive subjects: 25 HC, 75 PD-NC, 29 MCI-PD, and 22 PDD at an Italian and Czech movement disorder centre. Operational diagnostic criteria were applied to classify MCI-PD and PDD. All structural MRI images were processed together in the Czech centre. The spatial independent component analysis was used to assess group differences of local grey matter volume.

Results

We identified two independent patterns of grey matter volume deviations: a) Reductions in the hippocampus and temporal lobes; b) Decreases in fronto-parietal regions and increases in the midbrain/cerebellum. Both patterns differentiated PDD from all other groups and correlated with visuospatial deficits and letter verbal fluency, respectively. Only the second pattern additionally differentiated PD-NC from HC.

Conclusion

Grey matter changes in PDD involve areas associated with Alzheimer-like pathology while fronto-parietal abnormalities are possibly an early marker of PD cognitive decline. These findings are consistent with a non-linear cognitive progression in PD.  相似文献   

13.

Background

Chronic stimulant abuse is associated with both impairment in decision making and structural abnormalities in brain gray and white matter. Recent data suggest these structural abnormalities may be related to functional impairment in important behavioral processes.

Methodology/Principal Findings

In 15 cocaine-dependent and 18 control subjects, we examined relationships between decision-making performance on the Iowa Gambling Task (IGT) and white matter integrity as measured by diffusion tensor imaging (DTI). Whole brain voxelwise analyses showed that, relative to controls, the cocaine group had lower fractional anisotropy (FA) and higher mean of the second and third eigenvalues (λ⊥) in frontal and parietal white matter regions and the corpus callosum. Cocaine subjects showed worse performance on the IGT, notably over the last 40 trials. Importantly, FA and λ⊥ values in these regions showed a significant relationship with IGT performance on the last 40 trials.

Conclusions

Compromised white matter integrity in cocaine dependence may be related to functional impairments in decision making.  相似文献   

14.

Background

The exact underlying pathomechanism of central sleep apnea with Cheyne-Stokes respiration (CSA-CSR) is still unclear. Recent studies have demonstrated an association between cerebral white matter changes and CSA. A dysfunction of central respiratory control centers in the brainstem was suggested by some authors. Novel MR-imaging analysis tools now allow far more subtle assessment of microstructural cerebral changes. The aim of this study was to investigate whether and what severity of subtle structural cerebral changes could lead to CSA-CSR, and whether there is a specific pattern of neurodegenerative changes that cause CSR. Therefore, we examined patients with Fabry disease (FD), an inherited, lysosomal storage disease. White matter lesions are early and frequent findings in FD. Thus, FD can serve as a "model disease" of cerebral microangiopathy to study in more detail the impact of cerebral lesions on central sleep apnea.

Patients and Methods

Genetically proven FD patients (n = 23) and age-matched healthy controls (n = 44) underwent a cardio-respiratory polysomnography and brain MRI at 3.0 Tesla. We applied different MR-imaging techniques, ranging from semiquantitative measurement of white matter lesion (WML) volumes and automated calculation of brain tissue volumes to VBM of gray matter and voxel-based diffusion tensor imaging (DTI) analysis.

Results

In 5 of 23 Fabry patients (22%) CSA-CSR was detected. Voxel-based DTI analysis revealed widespread structural changes in FD patients when compared to the healthy controls. When calculated as a separate group, DTI changes of CSA-CSR patients were most prominent in the brainstem. Voxel-based regression analysis revealed a significant association between CSR severity and microstructural DTI changes within the brainstem.

Conclusion

Subtle microstructural changes in the brainstem might be a neuroanatomical correlate of CSA-CSR in patients at risk of WML. DTI is more sensitive and specific than conventional structural MRI and other advanced MR analyses tools in demonstrating these abnormalities.  相似文献   

15.

Objectives

Postoperative cognitive dysfunction (POCD) is recognized as a complication in the elderly after cardiac surgery. Imaging of the brain provides evidence of neurodegeneration in elderly patients; however, abnormalities in brain structure and their relation to POCD are uncertain. This pilot study investigated whether loss of gray matter in the bilateral medial temporal lobe (MTL), seen in preoperative MRI, was associated with POCD.

Methods

Data were collected prospectively on 28 elderly patients scheduled for elective cardiac surgery. MRI of the brains of all patients were assessed for prior cerebral infarctions, and carotid and intracranial arterial stenosis. Patients also completed six neuropsychological tests of memory, attention and executive function before and after surgery. POCD was defined as an individual decrease in more than two tests of at least 1 standard deviation from the group baseline mean for that test. The degree of gray matter loss in the MTL of each patient was calculated using voxel-based morphometry with three-dimensional, T1-weighted MRI. This represented the degree of gray matter change as a Z score.

Results

Postoperative cognitive dysfunction was identified in 8 of the 28 patients (29%). Patients with POCD had significantly more white matter lesions on MRI, and greater loss of gray matter in the bilateral MTL (average Z score 2.0±0.9) than patients without POCD. An analysis by stepwise logistic regression identified gray matter loss in the MTL and cerebral infarctions on MRI as independent predictors of POCD.

Conclusions

These preliminary findings suggested that reduced gray matter in the bilateral MTL and white matter lesions existed in brains of elderly cardiac surgery patients who experienced POCD. Additional studies with larger sample sizes are needed to confirm these findings.  相似文献   

16.

Objective

To investigate grey (GM) and white matter (WM) abnormalities and their effects on cognitive and behavioral deficits in a large, phenotypically and genotypically well-characterized cohort of classic adult (aDM1, age at onset ≥20 years) or juvenile (jDM1, age at onset <20 years) patients with myotonic dystrophy type 1 (DM1).

Methods

A case-control study including 51 DM1 patients (17 jDM1 and 34 aDM1) and 34 controls was conducted at an academic medical center. Clinical, cognitive and structural MRI evaluations were obtained. Quantitative assessments of regional GM volumes, WM hyperintensities (WMHs), and microstructural WM tract damage were performed. The association between structural brain damage and clinical and cognitive findings was assessed.

Results

DM1 patients showed a high prevalence of WMHs, severe regional GM atrophy including the key nodes of the sensorimotor and main cognitive brain networks, and WM microstructural damage of the interhemispheric, corticospinal, limbic and associative pathways. WM tract damage extends well beyond the focal WMHs. While aDM1 patients had severe patterns of GM atrophy and WM tract damage, in jDM1 patients WM abnormalities exceeded GM involvement. In DM1, WMHs and microstructural damage, but not GM atrophy, correlated with cognitive deficits.

Conclusions

WM damage, through a disconnection between GM structures, is likely to be the major contributor to cognitive impairment in DM1. Our MRI findings in aDM1 and jDM1 patients support the hypothesis of a degenerative (premature aging) origin of the GM abnormalities and of developmental changes as the principal substrates of microstructural WM alterations in DM1.  相似文献   

17.

Background

The clinical relevance of MR scanning in children with autism is still an open question and must be considered in light of the evolution of this technology. MRI was judged to be of insufficient value to be included in the standard clinical evaluation of autism according to the guidelines of the American Academy of Neurology and Child Neurology Society in 2000 [1]. However, this statement was based on results obtained from small samples of patients and, more importantly, included mostly insufficient MRI sequences. Our main objective was to evaluate the prevalence of brain abnormalities in a large group of children with a non-syndromic autistic disorder (AD) using T1, T2 and FLAIR MRI sequences.

Methodology

MRI inspection of 77 children and adolescents with non-syndromic AD (mean age 7.4±3.6) was performed. All met the DSM-IV and ADI –R criteria for autism. Based on recommended clinical and biological screenings, we excluded patients with infectious, metabolic or genetic diseases, seizures or any other neurological symptoms. Identical MRI inspections of 77 children (mean age 7.0±4.2) without AD, developmental or neurological disorders were also performed. All MRIs were acquired with a 1.5-T Signa GE (3-D T1-FSPGR, T2, FLAIR coronal and axial sequences). Two neuroradiologists independently inspected cortical and sub-cortical regions. MRIs were reported to be normal, abnormal or uninterpretable.

Principal Findings

MRIs were judged as uninterpretable in 10% (8/77) of the cases. In 48% of the children (33/69 patients), abnormalities were reported. Three predominant abnormalities were observed, including white matter signal abnormalities (19/69), major dilated Virchow–Robin spaces (12/69) and temporal lobe abnormalities (20/69). In all, 52% of the MRIs were interpreted as normal (36/69 patients).

Conclusions

An unexpectedly high rate of MRI abnormalities was found in the first large series of clinical MRI investigations in non-syndromic autism. These results could contribute to further etiopathogenetic research into autism.  相似文献   

18.

Background

Abnormal white matter development may disrupt integration within neural circuits, causing particular impairments in higher-order behaviours. In autism spectrum disorders (ASDs), white matter alterations may contribute to characteristic deficits in complex socio-emotional and communication domains. Here, we used diffusion tensor imaging (DTI) and tract based spatial statistics (TBSS) to evaluate white matter microstructure in ASD.

Methods/Principal Findings

DTI scans were acquired for 19 children and adolescents with ASD (∼8–18 years; mean 12.4±3.1) and 16 age and IQ matched controls (∼8–18 years; mean 12.3±3.6) on a 3T MRI system. DTI values for fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity, were measured. Age by group interactions for global and voxel-wise white matter indices were examined. Voxel-wise analyses comparing ASD with controls in: (i) the full cohort (ii), children only (≤12 yrs.), and (iii) adolescents only (>12 yrs.) were performed, followed by tract-specific comparisons. Significant age-by-group interactions on global DTI indices were found for all three diffusivity measures, but not for fractional anisotropy. Voxel-wise analyses revealed prominent diffusion measure differences in ASD children but not adolescents, when compared to healthy controls. Widespread increases in mean and radial diffusivity in ASD children were prominent in frontal white matter voxels. Follow-up tract-specific analyses highlighted disruption to pathways integrating frontal, temporal, and occipital structures involved in socio-emotional processing.

Conclusions/Significance

Our findings highlight disruption of neural circuitry in ASD, particularly in those white matter tracts that integrate the complex socio-emotional processing that is impaired in this disorder.  相似文献   

19.

Objectives

Perivascular spaces are associated with MRI markers of cerebral small vessel disease, including white matter hyperintensities. Although perivascular spaces are considered to be an early MRI marker of cerebral small vessel disease, it is unknown whether they are associated with further progression of MRI markers, especially white matter hyperintensities. We determined the association between perivascular spaces and progression of white matter hyperintensities after 2-year follow-up in lacunar stroke patients.

Methods

In 118 lacunar stroke patients we obtained brain MRI and 24-hour ambulatory blood pressure measurements at baseline, and a follow-up brain MRI 2 years later. We visually graded perivascular spaces and white matter hyperintensities at baseline. Progression of white matter hyperintensities was assessed using a visual white matter hyperintensity change scale. Associations with white matter hyperintensity progression were tested with binary logistic regression analysis.

Results

Extensive basal ganglia perivascular spaces were associated with progression of white matter hyperintensities (OR 4.29; 95% CI: 1.28–14.32; p<0.05), after adjustment for age, gender, 24-hour blood pressure and vascular risk factors. This association lost significance after additional adjustment for baseline white matter hyperintensities. Centrum semiovale perivascular spaces were not associated with progression of white matter hyperintensities.

Conclusions

Our study shows that extensive basal ganglia perivascular spaces are associated with progression of white matter hyperintensities in cerebral small vessel disease. However, this association was not independent of baseline white matter hyperintensities. Therefore, presence of white matter hyperintensities at baseline remains an important determinant of further progression of white matter hyperintensities in cerebral small vessel disease.  相似文献   

20.

Objectives

This is a cross-sectional study aimed at investigating cognitive performances in patients with primary lateral sclerosis (PLS) and using diffusion tensor (DT) magnetic resonance imaging (MRI) to determine the topographical distribution of microstructural white matter (WM) damage in patients with or without cognitive deficits.

Methods

DT MRI scans were obtained from 21 PLS patients and 35 age- and sex-matched healthy controls. All PLS patients underwent a comprehensive neuropsychological battery. Tract-based-spatial-statistics (TBSS) was used to perform a whole-brain voxel-wise analysis of fractional anisotropy (FA), axial, radial (radD) and mean diffusivity (MD).

Results

Ten PLS patients had abnormal scores in at least one neuropsychological test (PLS with cognitive deficits, PLS-cd). Compared with healthy controls and cognitively unimpaired PLS patients (PLS-cu), PLS-cd cases showed decreased FA and increased MD and radD in the corticospinal tract (CST), corpus callosum, brainstem, anterior limb of internal capsule, superior and inferior longitudinal fasciculi, fornix, thalamic radiations, and parietal lobes, bilaterally. Compared with healthy controls, PLS-cd patients showed further decreased FA and increased radD in the cerebellar WM, bilaterally. Compared with controls, PLS-cu patients showed decreased FA in the mid-body of corpus callosum. In PLS, executive and language test scores correlated with WM damage.

Conclusions

This is the first study evaluating the relationship between cognitive performance and WM tract damage in PLS patients. PLS can be associated with a multi-domain cognitive impairment. WM damage to interhemispheric, limbic and major associative WM tracts seem to be the structural correlate of cognitive abnormalities in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号