共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, light information received by the eyes is transmitted to the pineal gland via the circadian pacemaker, i.e., the suprachiasmatic nucleus (SCN). Melatonin secreted by the pineal gland at night decodes night length and regulates seasonal physiology and behavior. Melatonin regulates the expression of the β-subunit of thyroid-stimulating hormone (TSH; Tshb) in the pars tuberalis (PT) of the pituitary gland. Long day-induced PT TSH acts on ependymal cells in the mediobasal hypothalamus to induce the expression of type 2 deiodinase (Dio2) and reduce type 3 deiodinase (Dio3) that are thyroid hormone-activating and hormone-inactivating enzymes, respectively. The long day-activated thyroid hormone T3 regulates seasonal gonadotropin-releasing hormone secretion. It is well established that the circadian clock is involved in the regulation of photoperiodism. However, the involvement of the circadian clock gene in photoperiodism regulation remains unclear. Although mice are generally considered non-seasonal animals, it was recently demonstrated that mice are a good model for the study of photoperiodism. In the present study, therefore, we examined the effect of changing day length in Per2 deletion mutant mice that show shorter wheel-running rhythms under constant darkness followed by arhythmicity. Although the amplitude of clock gene (Per1, Cry1) expression was greatly attenuated in the SCN, the expression profile of arylalkylamine N-acetyltransferase, a rate-limiting melatonin synthesis enzyme, was unaffected in the pineal gland, and robust photoperiodic responses of the Tshb, Dio2, and Dio3 genes were observed. These results suggested that the Per2 clock gene is not necessary for the photoperiodic response in mice. 相似文献
2.
Sabra M. Abbott Jennifer M. Arnold Qing Chang Hai Miao Nobutoshi Ota Christine Cecala Paul E. Gold Jonathan V. Sweedler Martha U. Gillette 《PloS one》2013,8(8)
Sleep-wake cycling is controlled by the complex interplay between two brain systems, one which controls vigilance state, regulating the transition between sleep and wake, and the other circadian, which communicates time-of-day. Together, they align sleep appropriately with energetic need and the day-night cycle. Neural circuits connect brain stem sites that regulate vigilance state with the suprachiasmatic nucleus (SCN), the master circadian clock, but the function of these connections has been unknown. Coupling discrete stimulation of pontine nuclei controlling vigilance state with analytical chemical measurements of intra-SCN microdialysates in mouse, we found significant neurotransmitter release at the SCN and, concomitantly, resetting of behavioral circadian rhythms. Depending upon stimulus conditions and time-of-day, SCN acetylcholine and/or glutamate levels were augmented and generated shifts of behavioral rhythms. These results establish modes of neurochemical communication from brain regions controlling vigilance state to the central circadian clock, with behavioral consequences. They suggest a basis for dynamic integration across brain systems that regulate vigilance states, and a potential vulnerability to altered communication in sleep disorders. 相似文献
3.
4.
Kevin K. Lin Vivek Kumar Mikhail Geyfman Darya Chudova Alexander T. Ihler Padhraic Smyth Ralf Paus Joseph S. Takahashi Bogi Andersen 《PLoS genetics》2009,5(7)
Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes. 相似文献
5.
6.
Francine O. James Diane B. Boivin Sylvain Charbonneau Valérie Bélanger 《Chronobiology international》2013,30(6):1009-1034
The rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic nucleus (SCN) underlies the manifestation of endogenous circadian rhythmicity in behavior and physiology. Recent evidence demonstrating rhythmic clock gene expression in non‐SCN tissues suggests that functional clocks exist outside the central circadian pacemaker of the brain. In this investigation, the nature of an oscillator in peripheral blood mononuclear cells (PBMCs) is evaluated by assessing clock gene expression throughout both a typical sleep/wake cycle (LD) and during a constant routine (CR). Six healthy men and women aged (mean±SEM) 23.7±1.6 yrs participated in this five‐day investigation in temporal isolation. Core body temperature and plasma melatonin concentration were measured as markers of the central circadian pacemaker. The expression of HPER1, HPER2, and HBMAL1 was quantified in PBMCs sampled throughout an uninterrupted 72 h period. The core body temperature minimum and the midpoint of melatonin concentration measured during the CR occurred 2:17±0:20 and 3:24 ±0:09 h before habitual awakening, respectively, and were well aligned to the sleep/wake cycle. HPER1 and HPER2 expression in PBMCs demonstrated significant circadian rhythmicity that peaked early after wake‐time and was comparable under LD and CR conditions. HBMAL1 expression was more variable, and peaked in the middle of the wake period under LD conditions and during the habitual sleep period under CR conditions. For the first time, bi‐hourly sampling over three consecutive days is used to compare clock gene expression in a human peripheral oscillator under different sleep/wake conditions. 相似文献
7.
8.
9.
10.
Biological clock components have been detected in many epithelial tissues of the digestive tract of mammals (oral mucosa, pancreas, and liver), suggesting the existence of peripheral circadian clocks that may be entrainable by food. Our aim was to investigate the expression of main peripheral clock genes in colonocytes of healthy humans and in human colon carcinoma cell lines. The presence of clock components was investigated in single intact colonic crypts isolated by chelation from the biopsies of 25 patients (free of any sign of colonic lesions) undergoing routine colonoscopy and in cell lines of human colon carcinoma (Caco2 and HT29 clone 19A). Per‐1, per‐2, and clock mRNA were detected by real‐time RT‐PCR. The three‐dimensional distributions of PER‐1, PER‐2, CLOCK, and BMAL1 proteins were recorded along colonic crypts by immunofluorescent confocal imaging. We demonstrate the presence of per‐1, per‐2, and clock mRNA in samples prepared from colonic crypts of 5 patients and in all cell lines. We also demonstrate the presence of two circadian clock proteins, PER‐1 and CLOCK, in human colonocytes on crypts isolated from 20 patients (15 patients for PER‐1 and 6 for CLOCK) and in colon carcinoma cells. Establishing the presence of clock proteins in human colonic crypts is the first step toward the study of the regulation of the intestinal circadian clock by nutrients and feeding rhythms. 相似文献
11.
12.
Lameese D. Akacem Charles T. Simpkin Mary A. Carskadon Kenneth P. Wright Jr. Oskar G. Jenni Peter Achermann Monique K. LeBourgeois 《PloS one》2015,10(4)
The timing of the internal circadian clock shows large inter-individual variability across the lifespan. Although the sleep-wakefulness pattern of most toddlers includes an afternoon nap, the association between napping and circadian phase in early childhood remains unexplored. This study examined differences in circadian phase and sleep between napping and non-napping toddlers. Data were collected on 20 toddlers (34.2±2.0 months; 12 females; 15 nappers). Children followed their habitual napping and non-napping sleep schedules (monitored with actigraphy) for 5 days before an in-home salivary dim light melatonin onset (DLMO) assessment. On average, napping children fell asleep during their nap opportunities on 3.6±1.2 of the 5 days before the DLMO assessment. For these napping children, melatonin onset time was 38 min later (p = 0.044; d = 0.93), actigraphically-estimated bedtime was 43 min later (p = 0.014; d = 1.24), sleep onset time was 59 min later (p = 0.006; d = 1.46), and sleep onset latency was 16 min longer (p = 0.030; d = 1.03) than those not napping. Midsleep and wake time did not differ by napping status. No difference was observed in the bedtime, sleep onset, or midsleep phase relationships with DLMO; however, the wake time phase difference was 47 min smaller for napping toddlers (p = 0.029; d = 1.23). On average, nappers had 69 min shorter nighttime sleep durations (p = 0.006; d = 1.47) and spent 49 min less time in bed (p = 0.019; d = 1.16) than non-nappers. Number of days napping was correlated with melatonin onset time (r = 0.49; p = 0.014). Our findings indicate that napping influences individual variability in melatonin onset time in early childhood. The delayed bedtimes of napping toddlers likely permits light exposure later in the evening, thereby delaying the timing of the clock and sleep. Whether the early developmental trajectory of circadian phase involves an advance associated with the decline in napping is a question necessitating longitudinal data as children transition from a biphasic to monophasic sleep-wakefulness pattern. 相似文献
13.
14.
15.
The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets. 相似文献
16.
17.
Lim Chee Liew Valérie Hecht Rebecca E. Laurie Claire L. Knowles Jacqueline K. Vander Schoor Richard C. Macknight James L. Weller 《The Plant cell》2009,21(10):3198-3211
The DIE NEUTRALIS (DNE) locus in garden pea (Pisum sativum) was previously shown to inhibit flowering under noninductive short-day conditions and to affect a graft-transmissible flowering signal. In this study, we establish that DNE has a role in diurnal and/or circadian regulation of several clock genes, including the pea GIGANTEA (GI) ortholog LATE BLOOMER 1 (LATE1) and orthologs of the Arabidopsis thaliana genes LATE ELONGATED HYPOCOTYL and TIMING OF CHLOROPHYLL A/B BINDING PROTEIN EXPRESSION 1. We also confirm that LATE1 participates in the clock and provide evidence that DNE is the ortholog of Arabidopsis EARLY FLOWERING4 (ELF4). Circadian rhythms of clock gene expression in wild-type plants under constant light were weaker in pea than in Arabidopsis, and a number of differences were also seen in the effects of both DNE/ELF4 and LATE1/GI on clock gene expression. Grafting studies suggest that DNE controls flowering at least in part through a LATE1-dependent mobile stimulus, and dne mutants show elevated expression of a FLOWERING LOCUS T homolog under short-day conditions. However, the early flowering of the dne mutant is not associated with altered expression of a previously described CONSTANS-like gene. Collectively, our results characterize the clock system and reveal its importance for photoperiod responsiveness in a model legume. 相似文献
18.
19.
Aarti Jagannath Rachel Butler Sofia I.H. Godinho Yvonne Couch Laurence A. Brown Sridhar R. Vasudevan Kevin C. Flanagan Daniel Anthony Grant C. Churchill Matthew J.A. Wood Guido Steiner Martin Ebeling Markus Hossbach Joseph G. Wettstein Giles E. Duffield Silvia Gatti Mark W. Hankins Russell G. Foster Stuart N. Peirson 《Cell》2013