首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
T cell receptor signaling in the thymus can result in positive selection, and hence progressive maturation to the CD4(+)8(-) or CD4(-)8(+) stage, or induction of apoptosis by negative selection. Although it is poorly understood how TCR ligation at the CD4(+)8(+) stage can lead to such different cell fates, it is thought that the strength of signal may play a role in determining the outcome of TCR signaling. In this study, we have characterized the formation of an active signaling complex in thymocytes undergoing positive selection as a result of interaction with thymic epithelial cells. Although this signaling complex involves redistribution of cell surface and intracellular molecules, reminiscent of that observed in T cell activation, accumulation of GM1-containing lipid rafts was not observed. However, enforced expression of the costimulatory molecule CD80 on thymic epithelium induced GM1 polarization in thymocytes, and was accompanied by reduced positive selection and increased apoptosis. We suggest that the presence or absence of CD80 costimulation influences the outcome of TCR signaling in CD4(+)8(+) thymocytes through differential lipid raft recruitment, thus determining overall signal strength and influencing developmental cell fate.  相似文献   

2.
During thymic development, T cell progenitors undergo positive selection based on the ability of their T cell Ag receptors (TCR) to bind MHC ligands on thymic epithelial cells. Positive selection determines T cell fate, in that thymocytes whose TCR bind MHC class I (MHC-I) develop as CD8-lineage T cells, whereas those that bind MHC class II (MHC-II) develop as CD4 T cells. Positive selection also induces migration from the cortex to the medulla driven by the chemokine receptor CCR7. In this study, we show that CCR7 is up-regulated in a larger proportion of CD4(+)CD8(+) thymocytes undergoing positive selection on MHC-I compared with MHC-II. Mice bearing a mutation of Th-POK, a key CD4/CD8-lineage regulator, display increased expression of CCR7 among MHC-II-specific CD4(+)CD8(+) thymocytes. In addition, overexpression of CCR7 results in increased development of CD8 T cells bearing MHC-II-specific TCR. These findings suggest that the timing of CCR7 expression relative to coreceptor down-regulation is regulated by lineage commitment signals.  相似文献   

3.
A vast majority of thymocytes are eliminated during T cell development by apoptosis. However, apoptotic thymocytes are not usually found in the thymus, indicating that apoptotic thymocytes must be eliminated rapidly by scavengers. Although macrophages and dendritic cells are believed to play such role, little is known about scavengers in the thymus. We found that CD4(+)/CD11b(+)/CD11c(-) cells were present in the thymus and that they expressed costimulatory molecules for T cell selection and possessed Ag-presenting activity. Moreover, these CD4(+)/CD11b(+) cells phagocytosed apoptotic thymocytes much more efficiently than thymic CD4(-)/CD11b(+) cells as well as activated peritoneal macrophages. CD4(+)/CD11b(+) cells became larger along with thymus development, while no such change was observed in CD4(-)/CD11b(+) cells. Finally, engulfed nuclei were frequently found in CD4(+)/CD11b(+) cells. These results strongly suggest that thymic CD4(+)/CD11b(+) cells are major scavengers of apoptotic thymocytes.  相似文献   

4.
Thymocyte selection involves signaling by TCR engaging diverse self-peptide:MHC molecule ligands on various cell types in the cortex and medulla. Here we separately analyze early and late stages of selection to better understand how presenting cell type, ligand quality, and the timing of TCR signaling contribute to intrathymic differentiation. TCR transgenic CD4+CD8+ thymocytes (double positive (DP)) from MHC-deficient mice were stimulated using various presenting cells and ligands. The resulting CD69high cells were isolated and evaluated for maturation in reaggregate cultures with wild-type or MHC molecule-deficient thymic stroma with or without added hemopoietic dendritic cells (DC). Production of CD4+ T cells required TCR signaling in the reaggregates, indicating that transient recognition of self-ligands by DP is inadequate for full differentiation. DC bearing a potent agonist ligand could initiate positive selection, producing activated thymocytes that matured into agonist-responsive T cells in reaggregates lacking the same ligand. DC could also support the TCR signaling necessary for late maturation. These results argue that despite the negative role assigned to DC in past studies, neither the peptide:MHC molecule complexes present on DC nor any other signals provided by these cells stimulate only thymocyte death. These findings also indicate that unique epithelial ligands are not necessary for positive selection. They provide additional insight into the role of ligand quality in selection events and support the concept that following initiation of maturation from the DP state, persistent TCR signaling is characteristic of and perhaps required by T cells.  相似文献   

5.
The critical role of LIGHT, a TNF family member, in T cell development.   总被引:10,自引:0,他引:10  
Negative selection refers to the selective deletion of autoreactive thymocytes but its molecular events have not been well defined. In this study, we demonstrate that a cellular ligand for herpes virus entry mediator and lymphotoxin receptor (LIGHT), a newly identified member of the TNF superfamily, may play a critical role in negative selection. Using TCR transgenic mice, we find that the blockade of LIGHT signaling in vitro and in vivo prevents negative selection induced by peptide and intrathymically expressed Ags, resulting in the rescue of thymocytes from apoptosis. Furthermore, the thymi of LIGHT transgenic mice show severe atrophy with remarkably reduced CD4(+)CD8(+) double-positive cells caused by increased apoptosis, suggesting that LIGHT can delete immature T cells in vivo. Taken together, these results demonstrate a critical role of LIGHT in thymic negative selection of the T cell repertoire.  相似文献   

6.
CD4(+)CD8(+) double-positive (DP) thymocytes express a lower level of surface TCR than do mature T cells or single-positive (SP) thymocytes. Regulation of the TCR on DP thymocytes appears to result from intrathymic signaling, as in vitro culture of these cells results in spontaneous TCR up-regulation. In this study, we examined cell spreading and cytoskeletal polarization responses that have been shown to occur in response to TCR engagement in mature T cells. Using DP thymocytes stimulated on lipid bilayers or nontransgenic thymocytes added to anti-CD3-coated surfaces, we found that cell spreading and polarization of the microtubule organizing center and the actin cytoskeleton were inefficient in freshly isolated DP thymocytes, but were dramatically enhanced after overnight culture. SP (CD4(+)) thymocytes showed efficient responses to TCR engagement, suggesting that releasing DP thymocytes from the thymic environment mimics some aspects of positive selection. The poor translation of a TCR signal to cytoskeletal responses could limit the ability of DP thymocytes to form stable contacts with APCs and may thereby regulate thymocyte selection during T cell development.  相似文献   

7.
The biological function of CD30 in the thymus has been only partially elucidated, although recent data indicate that it may be involved in negative selection. Because CD30 is expressed only by a small subpopulation of medullary thymocytes, we generated transgenic (Tg) mice overexpressing CD30 in T lymphocytes to further address its role in T cell development. CD30 Tg mice have normal thymic size with a normal number and subset distribution of thymocytes. In vitro, in the absence of CD30 ligation, thymocytes of CD30 Tg mice have normal survival and responses to apoptotic stimuli such as radiation, dexamethasone, and Fas. However, in contrast to controls, CD30 Tg thymocytes are induced to undergo programmed cell death (PCD) upon cross-linking of CD30, and the simultaneous engagement of TCR and CD30 results in a synergistic increase in thymic PCD. CD30-mediated PCD requires caspase 1 and caspase 3, is not associated with the activation of NF-kappaB or c-Jun, but is totally prevented by Bcl-2. Furthermore, CD30 overexpression enhances the deletion of CD4+/CD8+ thymocytes induced by staphylococcal enterotoxin B superantigen and specific peptide. These findings suggest that CD30 may act as a costimulatory molecule in thymic negative selection.  相似文献   

8.
The positive and negative selection of immature thymocytes that shapes the mature T cell repertoire appears to occur at an intermediate stage of development when the cells express low levels of TCR/CD3. These cells are also CD4+CD8+ and CD28+ (dull), and signals delivered by these three accessory molecules have been implicated in the selection process. We have examined the regulatory function of these accessory molecules on responses of immature thymocytes stimulated through the TCR/CD3 complex. Cross-linking CD4 or CD8 with CD3 strongly enhanced signal transduction via CD3 as assessed by protein tyrosine phosphorylation and calcium mobilization. Subsequent cell proliferation could be induced by soluble anti-CD28 mAb, which was comitogenic for cells stimulated with CD3 x CD4 or CD3 x CD8 cross-linking, but was without effect on cells stimulated with CD3 x CD3 cross-linking. A potential role for CD28 signal transduction in thymic maturation is suggested by the demonstration that the BB-1 molecule, a natural ligand for CD28, is expressed on thymic stromal cells. Taken together, our data suggest a model of thymic development in which CD4 or CD8 may enhance TCR/CD3 signaling upon coligation by an MHC molecule. If the CD28 surface receptor is simultaneously stimulated by a BB-1 expressing stromal cell, this set of interactions could lead to proliferation and positive selection. In the absence of CD28 stimulation the enhanced TCR/CD3 signals might lead to apoptosis and negative selection.  相似文献   

9.
Calcineurin is a calcium/calmodulin-dependent phosphatase whose activity is required for the induction of T cell lymphokine production and proliferation. Although its specific role in T cell development is less well defined, studies with the immunosuppressive drugs cyclosporin A and FK-506 suggest that it is involved in both positive and negative selection of immature thymocytes. To more completely characterize a role for calcineurin in T cell development in vivo, we have generated transgenic mice that express an activated form of this enzyme in thymocytes and peripheral T cells. We find that the transgene causes a block in early thymic development, resulting in a reduction in the steady-state number of CD4 and CD8 double positives, but not on the number of mature T cells. We also find that thymocytes and mature T cells expressing this transgene are more sensitive to signals through their TCR. In thymocytes this sensitivity difference is manifested as an increase in positive selection, although negative selection seems to remain unaffected. Therefore, these studies confirm and extend past reports that suggested a role for calcineurin in thymic development and selection.  相似文献   

10.
Developing thymocytes undergo a rigorous selection process to ensure that the mature T cell population expresses a T cell receptor (TCR) repertoire that can functionally interact with major histocompatibility complexes (MHC). Over 90% of thymocytes fail this selection process and die. A small number of macrophages within the thymus are responsible for clearing the large number of dying thymocytes that must be continuously cleared. We studied the capacity of thymic macrophages to clear apoptotic cells under acute circumstances. This was done by synchronously inducing cell death in the thymus and then monitoring the clearance of apoptotic thymocytes. Interestingly, acute cell death was shown to recruit large numbers of CD11b+ cells into the thymus. In the absence of a minor CSF-1 dependent population of macrophages, the recruitment of these CD11b+ cells into the thymus was greatly reduced and the clearance of apoptotic cells was disrupted. To assess a possible role for the CD11b+ cells in the clearance of apoptotic cells, we analyzed mice deficient for eosinophils and mice with defective trafficking of neutrophils. Failure to attract either eosinophils or neutrophils to the thymus resulted in the impaired clearance of apoptotic cells. These results suggested that there is crosstalk between cells of the innate immune system that is necessary for maximizing the efficiency of apoptotic cell removal.  相似文献   

11.
The level of CD8 expression can determine the outcome of thymic selection.   总被引:1,自引:0,他引:1  
E A Robey  F Ramsdell  D Kioussis  W Sha  D Loh  R Axel  B J Fowlkes 《Cell》1992,69(7):1089-1096
During thymic development, thymocytes that can recognize major histocompatability complex (MHC) molecules on thymic epithelial cells are selected to survive and mature (positive selection), whereas thymocytes that recognize MHC on hematopoietic cells are destroyed (negative selection). It is not known how MHC recognition can mediate both death and survival. One model to explain this paradox proposes that thymocytes whose T cell antigen receptors (TCRs) recognize MHC with high affinity are eliminated by negative selection, whereas low affinity TCR-MHC interactions are sufficient to mediate positive selection. Here we report that, while the expression of a 2C TCR transgene leads to positive selection of thymocytes in H-2b mice, expression of both a CD8 transgene and a 2C TCR transgene causes negative selection. This observation indicates that quantitative differences in TCR-MHC recognition are a critical determinant of T cell fate, a finding predicted by the affinity model for thymic selection.  相似文献   

12.
Histone deacetylase 7 (HDAC7) is a T‐cell receptor (TCR) signal‐dependent regulator of differentiation that is highly expressed in CD4/CD8 double‐positive (DP) thymocytes. Here, we examine the effect of blocking TCR‐dependent nuclear export of HDAC7 during thymic selection, through expression of a signal‐resistant mutant of HDAC7 (HDAC7‐ΔP) in thymocytes. We find that HDAC7‐ΔP transgenic thymocytes exhibit a profound block in negative thymic selection, but can still undergo positive selection, resulting in the escape of autoreactive T cells into the periphery. Gene expression profiling reveals a comprehensive suppression of the negative selection‐associated gene expression programme in DP thymocytes, associated with a defect in the activation of MAP kinase pathways by TCR signals. The consequence of this block in vivo is a lethal autoimmune syndrome involving the exocrine pancreas and other abdominal organs. These experiments establish a novel molecular model of autoimmunity and cast new light on the relationship between thymic selection and immune self‐tolerance.  相似文献   

13.
It was recently demonstrated that there are CD4(+) macrophages, which exhibit strong phagocytic activity, in the thymus. They are suggested to play an important role for the elimination of apoptotic thymocytes. However, the origin and nature of CD4(+) macrophages in the thymus remain unexplored. In this study, we describe that the most immature intrathymic progenitors (CD25(-)/CD44(+)/FcR(+)) give rise to CD4(+) macrophages by oncostatin M-responsive thymic epithelial cells (ORTEC) in an IL-7-dependent manner. Neither conditioned medium of ORTEC nor a mixture of cytokines induced CD4(+) macrophages, and oncostatin M receptor was not expressed in thymocytes, suggesting that the development of CD4(+) macrophages from the immature thymocytes requires a direct interaction with ORTEC. These results collectively suggest that the development of CD4(+) macrophages from the intrathymic T cell progenitors is induced by thymic epithelial cells.  相似文献   

14.
Positive selection during thymocyte development is driven by the affinity and avidity of the TCR for MHC-peptide complexes expressed in the thymus. In this study, we show that programmed death-1 (PD-1), a member of the B7/CD28 family of costimulatory receptors, inhibits TCR-mediated positive selection through PD-1 ligand 1 (PD-L1):PD-1 interactions. Transgenic mice that constitutively overexpress PD-1 on CD4+CD8+ thymocytes display defects in positive selection in vivo. Using an in vitro model system, we find that PD-1 is up-regulated following TCR engagement on CD4+CD8+ murine thymocytes. Coligation of TCR and PD-1 on CD4+CD8+ thymocytes with a novel PD-1 agonistic mAb inhibits the activation of ERK and up-regulation of bcl-2, both of which are downstream mediators essential for positive selection. Inhibitory signals through PD-1 can overcome the ability of positive costimulators, such as CD2 and CD28, to facilitate positive selection. Finally, defects in positive selection that result from PD-1 overexpression in thymocytes resolve upon elimination of PD-L1, but not PD-1 ligand 2, expression. PD-L1-deficient mice have increased numbers of CD4+CD8+ and CD4+ thymocytes, indicating that PD-L1 is involved in normal thymic selection. These data demonstrate that PD-1:PD-L1 interactions are critical to positive selection and play a role in shaping the T cell repertoire.  相似文献   

15.
A complete understanding of negative selection has been elusive due to the rapid apoptosis and clearance of thymocytes in vivo. We report a TCR transgenic model in which expression of the TCR during differentiation occurs only after V(D)J-like recombination. TCR expression from this transgene closely mimics expression of the endogenous TCRα locus allowing for development that is similar to wild type thymocytes. This model allowed us to characterize the phenotypic changes that occurred after TCR-mediated signaling in self-reactive thymocytes prior to their deletion in a highly physiological setting. Self-reactive thymocytes were identified as being immature, activated and CD4loCD8lo. These cells had upregulated markers of negative selection and were apoptotic. Elimination of Bim reduced the apoptosis of self-reactive thymocytes, but it did not rescue their differentiation and the cells remained at the immature CD4loCD8lo stage of development. These cells upregulate Nur77 and do not contribute to the peripheral T cell repertoire in vivo. Remarkably, development past the CD4loCD8lo stage was possible once the cells were removed from the negatively selecting thymic environment. In vitro development of these cells occurred despite their maintenance of high intracellular levels of Nur77. Therefore, in vivo, negatively selected Bim-deficient thymocytes are eliminated after prolonged developmental arrest via a Bim-independent pathway that is dependent on the thymic microenvironment. These data newly reveal a layering of immediate, Bim-dependent, and delayed Bim-independent pathways that both contribute to elimination of self-reactive thymocytes in vivo.  相似文献   

16.
The CD45 protein tyrosine phosphatase regulates Ag receptor signaling in T and B cells. In the absence of CD45, TCR coupling to downstream signaling cascades is profoundly reduced. Moreover, in CD45-null mice, the maturation of CD4+CD8+ thymocytes into CD4+CD8- or CD4-CD8+ thymocytes is severely impaired. These findings suggest that thymic selection may not proceed normally in CD45-null mice, and may be biased in favor of thymocytes expressing TCRs with strong reactivity toward self-MHC-peptide ligands to compensate for debilitated TCR signaling. To test this possibility, we purified peripheral T cells from CD45-null mice and fused them with the BWalpha-beta- thymoma to generate hybridomas expressing normal levels of TCR and CD45. The reactivity of these hybridomas to self or foreign MHC-peptide complexes was assessed by measuring the amount of IL-2 secreted upon stimulation with syngeneic or allogeneic splenocytes. A very high proportion (55%) of the hybridomas tested reacted against syngeneic APCs, indicating that the majority of T cells in CD45-null mice express TCRs with high avidity for self-MHC-peptide ligands, and are thus potentially autoreactive. Furthermore, a large proportion of TCRs selected in CD45-null mice (H-2b) were also shown to display reactivity toward closely related MHC-peptide complexes, such as H-2bm12. These results support the notion that modulating the strength of TCR-mediated signals can alter the outcome of thymic selection, and demonstrate that CD45, by molding the window of affinity/avidity for positive and negative selection, directly participates in the shaping of the T cell repertoire.  相似文献   

17.
A signal initiated by the newly formed Ag receptor is integrated with microenvironmental cues during T cell development to ensure positive selection of CD4+CD8+ progenitors into functionally mature CD4+ or CD8+ T lymphocytes. During this transition, a survival program is initiated, TCR gene recombination ceases, cells migrate into a new thymic microenvironment, the responsiveness of the Ag receptor is tuned, and the cells commit to a specific T lineage. To determine potential regulators of these processes, we used mRNA microarray analysis to compare gene expression changes in CD4+CD8+ thymocytes from TCR transgenic mice that have received a TCR selection signal with those that had not received a signal. We found 129 genes with expression that changed significantly during positive selection, the majority of which were not previously appreciated. A large number of these changes were confirmed by real-time PCR or flow cytometry. We have combined our findings with gene changes reported in the literature to provide a comprehensive report of the genes regulated during positive selection, and we attempted to assign these genes to positive selection process categories.  相似文献   

18.
Expression of the T‐cell receptor (TCR):CD3 complex is tightly regulated during T‐cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ε proline‐rich sequence, Lck, c‐Cbl, and SLAP, which collectively trigger the dynamin‐dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ‐monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T‐cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T‐cell development.  相似文献   

19.
20.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号