首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BMP9, a member of the TGFβ superfamily, is a homodimer that forms a signaling complex with two type I and two type II receptors. Signaling through high-affinity activin receptor-like kinase 1 (ALK1) in endothelial cells, circulating BMP9 acts as a vascular quiescence factor, maintaining endothelial homeostasis. BMP9 is also the most potent BMP for inducing osteogenic signaling in mesenchymal stem cells in vitro and promoting bone formation in vivo. This activity requires ALK1, the lower affinity type I receptor ALK2, and higher concentrations of BMP9. In adults, BMP9 is constitutively expressed in hepatocytes and secreted into the circulation. Optimum concentrations of BMP9 are essential to maintain the highly specific endothelial-protective function. Factors regulating BMP9 stability and activity remain unknown. Here, we showed by chromatography and a 1.9 Å crystal structure that stable BMP9 dimers could form either with (D-form) or without (M-form) an intermolecular disulfide bond. Although both forms of BMP9 were capable of binding to the prodomain and ALK1, the M-form demonstrated less sustained induction of Smad1/5/8 phosphorylation. The two forms could be converted into each other by changing the redox potential, and this redox switch caused a major alteration in BMP9 stability. The M-form displayed greater susceptibility to redox-dependent cleavage by proteases present in serum. This study provides a mechanism for the regulation of circulating BMP9 concentrations and may provide new rationales for approaches to modify BMP9 levels for therapeutic purposes.  相似文献   

2.
Hereditary hemorrhagic telangiectasia (HHT), the most common inherited vascular disorder, is caused by mutations in genes involved in the transforming growth factor beta (TGF-β) signaling pathway (ENG, ACVRL1, and SMAD4). Yet, approximately 15% of individuals with clinical features of HHT do not have mutations in these genes, suggesting that there are undiscovered mutations in other genes for HHT and possibly vascular disorders with overlapping phenotypes. The genetic etiology for 191 unrelated individuals clinically suspected to have HHT was investigated with the use of exome and Sanger sequencing; these individuals had no mutations in ENG, ACVRL1, and SMAD4. Mutations in BMP9 (also known as GDF2) were identified in three unrelated probands. These three individuals had epistaxis and dermal lesions that were described as telangiectases but whose location and appearance resembled lesions described in some individuals with RASA1-related disorders (capillary malformation-arteriovenous malformation syndrome). Analyses of the variant proteins suggested that mutations negatively affect protein processing and/or function, and a bmp9-deficient zebrafish model demonstrated that BMP9 is involved in angiogenesis. These data confirm a genetic cause of a vascular-anomaly syndrome that has phenotypic overlap with HHT.  相似文献   

3.
In endothelial cells, two type I receptors of the transforming growth factor β (TGF-β) family, ALK1 and ALK5, coordinate to regulate embryonic angiogenesis in response to BMP9/10 and TGF-β. Whereas TGF-β binds to and activates ALK5, leading to Smad2/3 phosphorylation and inhibition of endothelial cell proliferation and migration, BMP9/10 and TGF-β also bind to ALK1, resulting in the activation of Smad1/5. SnoN is a negative regulator of ALK5 signaling through the binding and repression of Smad2/3. Here we uncover a positive role of SnoN in enhancing Smad1/5 activation in endothelial cells to promote angiogenesis. Upon ligand binding, SnoN directly bound to ALK1 on the plasma membrane and facilitated the interaction between ALK1 and Smad1/5, enhancing Smad1/5 phosphorylation. Disruption of this SnoN–Smad interaction impaired Smad1/5 activation and up-regulated Smad2/3 activity. This resulted in defective angiogenesis and arteriovenous malformations, leading to embryonic lethality at E12.5. Thus, SnoN is essential for TGF-β/BMP9-dependent biological processes by its ability to both positively and negatively modulate the activities of Smad-dependent pathways.  相似文献   

4.
5.
6.
Transforming growth factor β (TGF-β) and related cytokines play a central role in the vascular system. In vitro, TGF-β induces aortic endothelial cells to assemble subcellular actin-rich structures specialized for matrix degradation called podosomes. To explore further this TGF-β-specific response and determine in which context podosomes form, ALK5 and ALK1 TGF-β receptor signaling pathways were investigated in bovine aortic endothelial cells. We report that TGF-β drives podosome formation through ALK5 and the downstream effectors Smad2 and Smad3. Concurrent TGF-β-induced ALK1 signaling mitigates ALK5 responses through Smad1. ALK1 signaling induced by BMP9 also antagonizes TGF-β-induced podosome formation, but this occurs through both Smad1 and Smad5. Whereas ALK1 neutralization brings ALK5 signals to full potency for TGF-β-induced podosome formation, ALK1 depletion leads to cell disturbances not compatible with podosome assembly. Thus, ALK1 possesses passive and active modalities. Altogether, our results reveal specific features of ALK1 and ALK5 signaling with potential clinical implications.  相似文献   

7.
Genome-wide association studies (GWAS) of colorectal cancer (CRC) have led to the identification of a number of common variants associated with modest risk. Several risk variants map within the vicinity of TGFβ/BMP signaling pathway genes, including rs4939827 within an intron of SMAD7 at 18q21.1. A previous study implicated a novel SNP (novel 1 or rs58920878) as a functional variant within an enhancer element in SMAD7 intron 4. In this study, we show that four SNPs including novel 1 (rs6507874, rs6507875, rs8085824, and rs58920878) in linkage disequilibrium (LD) with the index SNP rs4939827 demonstrate allele-specific enhancer effects in a large, multi-component enhancer of SMAD7. All four SNPs demonstrate allele-specific protein binding to nuclear extracts of CRC cell lines. Furthermore, some of the risk-associated alleles correlate with increased expression of SMAD7 in normal colon tissues. Finally, we show that the enhancer is responsive to BMP4 stimulation. Taken together, we propose that the associated CRC risk at 18q21.1 is due to four functional variants that regulate SMAD7 expression and potentially perturb a BMP negative feedback loop in TGFβ/BMP signaling pathways.  相似文献   

8.
Endoglin and activin receptor-like kinase 1 are specialized transforming growth factor-beta (TGF-β) superfamily receptors, primarily expressed in endothelial cells. Mutations in the corresponding ENG or ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT1 and HHT2 respectively). To discover proteins interacting with endoglin, ACVRL1 and TGF-β receptor type 2 and involved in TGF-β signaling, we applied LUMIER, a high-throughput mammalian interactome mapping technology. Using stringent criteria, we identified 181 novel unique and shared interactions with ACVRL1, TGF-β receptor type 2, and endoglin, defining potential novel important vascular networks. In particular, the regulatory subunit B-beta of the protein phosphatase PP2A (PPP2R2B) interacted with all three receptors. Interestingly, the PPP2R2B gene lies in an interval in linkage disequilibrium with HHT3, for which the gene remains unidentified. We show that PPP2R2B protein interacts with the ACVRL1/TGFBR2/endoglin complex and recruits PP2A to nitric oxide synthase 3 (NOS3). Endoglin overexpression in endothelial cells inhibits the association of PPP2R2B with NOS3, whereas endoglin-deficient cells show enhanced PP2A-NOS3 interaction and lower levels of endogenous NOS3 Serine 1177 phosphorylation. Our data suggest that endoglin regulates NOS3 activation status by regulating PPP2R2B access to NOS3, and that PPP2R2B might be the HHT3 gene. Furthermore, endoglin and ACVRL1 contribute to several novel networks, including TGF-β dependent and independent ones, critical for vascular function and potentially defective in HHT.Transforming growth factor-β (TGF-β)1 superfamily ligands, including TGF-βs, activins and bone morphogenic proteins (BMPs), regulate several pathways essential for vascular development and function (1). Responses to these ligands are controlled by type I and II serine kinase receptors, coreceptors and signaling SMAD intermediates. Endothelial cells express the coreceptor, endoglin, and the specialized type I receptor, ACVRL1 (activin receptor-like kinase 1 or ALK1); both molecules are critical for regulation of angiogenesis and vasomotor function by TGF-β superfamily ligands (2, 3).Mutations in ENG and ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT), types 1 and 2, respectively (4). HHT affects 1 in 5000–8000 people worldwide and is characterized by arteriovenous malformations (AVMs) in multiple organs, potentially leading to severe hemorrhages and strokes (4). Haploinsufficiency is the underlying cause of HHT, indicating that reduced levels of functional endoglin or ACVRL1 (ALK1) proteins predispose to endothelial dysfunction and AVMs (5). Although the mechanisms responsible for AVMs remain unclear, the elucidation of how members of the TGF-β superfamily and their molecular networks regulate vascular integrity is vital for future treatments of HHT.We have demonstrated that endoglin interacts with endothelial nitric oxide synthase (NOS3 or eNOS) and regulates its activation (2). NOS3 is a Ca+2 and calmodulin-regulated enzyme that produces NO● in response to humoral and mechanical stimuli via dynamic interactions with various allosteric regulators such as heat shock protein 90 (HSP90). NOS3 is also regulated by dynamic changes in its phosphorylation status. For example, effects of the vascular endothelial growth factor (VEGF) on angiogenesis, vascular permeability and vasomotor tone are mediated in part through Akt-dependent phosphorylation of NOS3 Ser1177 and by increased NOS3-HSP90 association (6). Although phosphorylation of NOS3 Ser1177 is indicative of agonist-induced activation, it is preceded by dephosphorylation at Thr495. TGF-β1 and -β3 but not -β2 responses can sensitize NOS3 for activation by inducing dephosphorylation at Thr495, and therefore contribute to NOS3 activation and NO-dependent vasorelaxation (7). Endoglin regulates TGF-β1 and -β3 but not -β2 responses, and is required for their induction of NOS3 Thr495 dephosphorylation (7, 8).In the vascular endothelium of HHT patients and in Eng and Alk1 heterozygous mice, impaired association of NOS3 with HSP90 renders the enzyme uncoupled, causing production of superoxide (●O2) instead of NO● (2, 3, 9) and leading to endothelial damage. Interestingly, TGF-β1 and -β3 do not induce phosphorylation at NOS3 Ser1177, yet NOS3 activation in response to TGF-β1 is abolished in endoglin-deficient cells, impairing vasomotor function (3). ACVRL1 (or ALK1) also interacts with NOS3, and its reduced levels in endothelial cells similarly cause NOS3-derived oxidative stress (3, 9).In view of the crucial roles of endoglin and ACVRL1 in the development and maintenance of the normal vasculature and the definite contribution of their mutated state to HHT, we used the LUMIER high-throughput technology (10) to identify novel protein interactions and molecular networks for these predominantly endothelial receptors. We included TGFBR2 to further define TGF-β protein networks potentially important for vascular function, and attempt to distinguish the TGF-β networks from those associated with BMP9/BMP10 and mediated by ACVRL1 in a complex with BMPR2 and endoglin (11, 12).One of identified proteins interacting with all three receptors was protein phosphatase 2A (PP2A), implicated in multiple pathways. PP2A is a holoenzyme with one structural subunit (PPP2R1A or PPP2R1B) associated with one catalytic subunit (PPP2CA or PPP2CB) and one of 19 regulatory B subunits, the latter conferring specificity to the enzyme by recruiting interacting proteins (13, 14). Of interest, PP2A interacts with NOS3 to regulate Ser1177 phosphorylation and NO● production (15). However, the mechanisms governing recruitment of PP2A to NOS3 and the contribution of TGF-β/BMP receptor complexes are unknown. Recently, the human PPP2R2B gene coding for PPP2R2B protein (also known as PP2A-Bβ regulatory subunit) was mapped to chromosome 5q31-q32, in an interval in linkage disequilibrium with the HHT3 locus (16, 17). We now report that PPP2R2B interacts with the ACVRL1/TGFBR2/endoglin complex and that endoglin governs NOS3 phosphorylation and activation status by hindering PP2A access to NOS3 via the PPP2R2B subunit. Loss of endoglin leads to constitutive reduction in NOS3 phosphorylation and likely to changes in several networks with consequent endothelial dysfunction.  相似文献   

9.
10.
11.
12.
The transforming growth factor β (TGFβ) family has critical roles in the regulation of fertility. In addition, the pathogenesis of some human cancers is attributed to misregulation of TGFβ function and SMAD2 or SMAD4 mutations. There are limited mouse models for the BMP signaling SMADs (BR-SMADs) 1, 5, and 8 because of embryonic lethality and suspected genetic redundancy. Using tissue-specific ablation in mice, we deleted the BR-SMADs from somatic cells of ovaries and testes. Single conditional knockouts for Smad1 or Smad5 or mice homozygous null for Smad8 are viable and fertile. Female double Smad1 Smad5 and triple Smad1 Smad5 Smad8 conditional knockout mice become infertile and develop metastatic granulosa cell tumors. Male double Smad1 Smad5 conditional knockout mice are fertile but demonstrate metastatic testicular tumor development. Microarray analysis indicated significant alterations in expression of genes related to the TGFβ pathway, as well as genes involved in infertility and extracellular matrix production. These data strongly implicate the BR-SMADs as part of a critical developmental pathway in ovaries and testis that, when disrupted, leads to malignant transformation.  相似文献   

13.
14.
15.
16.
Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and functional interactions between TP63 and an array of morphogenic and morphostatic signals that govern tissue and tumor stasis, mitotic polarity, and cell fate; however the cellular signals that account for specific functions of TP63 are incompletely understood. To address this we sought to identify signaling pathways that regulate expression, stability or activity of ΔNp63α. An siRNA-based screen of the human kinome identified the Type 1 TGFβ receptor, ALK5, as the kinase required for phosphorylation of ΔNp63α at Serine 66/68 (S66/68). This activity is TGFβ-dependent and sensitive to either ALK5-directed siRNA or the ALK5 kinase inhibitor A83-01. Mechanistic studies support a model in which ALK5 is proteolytically cleaved at the internal juxtamembrane region resulting in the translocation of the C-terminal ALK5-intracellular kinase domain (ALK5IKD). In this study, we demonstrate that ALK5-mediated phosphorylation of ΔNp63α is required for the anti-clonogenic effects of TGFΒ and ectopic expression of ALK5IKD mimics these effects. Finally, we present evidence that ultraviolet irradiation-mediated phosphorylation of ΔNp63α is sensitive to ALK5 inhibitors. These findings identify a non-canonical TGFβ-signaling pathway that mediates the anti-clonogenic effects of TGFβ and the effects of cellular stress via ΔNp63α phosphorylation.  相似文献   

17.
18.
19.
Chronic human immunodeficiency virus and simian immunodeficiency virus (HIV and SIV) infections are characterized by mucosal inflammation in the presence of anti-inflammatory cytokines such as transforming growth factor β (TGFβ). The mechanisms for refractiveness to TGFβ are not clear. Here we show that the expression of microRNA miR-155 was significantly upregulated in the oropharyngeal mucosa during chronic SIV infection and was coincident with downregulation of TGFβ receptor 2 (TGFβ-R2) and SMAD5, key TGFβ signaling genes that harbor putative target sites for miR-155. Ectopic expression of miR-155 in vitro was found to significantly downregulate TGFβ-R2 and Smad5 expression, suggesting a role for miR-155 in the suppression of TGFβ-R2 and SMAD5 genes in vivo. The downregulation of TGFβ signaling genes by miR-155 likely contributes to the nonresponsiveness to TGFβ during SIV infection and may inadvertently aid in increased immune activation during HIV and SIV infections.  相似文献   

20.

Background

Effective treatments for fibrotic diseases such as idiopathic pulmonary fibrosis are largely lacking. Transforming growth factor beta (TGFβ) plays a central role in the pathophysiology of fibrosis. We hypothesized that bone morphogenetic proteins (BMP), another family within the TGFβ superfamily of growth factors, modulate fibrogenesis driven by TGFβ. We therefore studied the role of endogenous BMP signaling in bleomycin induced lung fibrosis.

Methods

Lung fibrosis was induced in wild-type or noggin haploinsufficient (Nog+/LacZ) mice by intratracheal instillation of bleomycin, or phosphate buffered saline as a control. Invasive pulmonary function tests were performed using the flexiVent® SCIREQ system. The mice were sacrificed and lung tissue was collected for analysis using histopathology, collagen quantification, immunohistochemistry and gene expression analysis.

Results

Nog+/LacZ mice are a known model of increased BMP signaling and were partially protected from bleomycin-induced lung fibrosis with reduced Ashcroft score, reduced collagen content and preservation of pulmonary compliance. In bleomycin-induced lung fibrosis, TGFβ and BMP signaling followed an inverse course, with dynamic activation of TGFβ signaling and repression of BMP signaling activity.

Conclusions

Upon bleomycin exposure, active BMP signaling is decreased. Derepression of BMP signaling in Nog+/LacZ mice protects against bleomycin-induced pulmonary fibrosis. Modulating the balance between BMP and TGFβ, in particular increasing endogenous BMP signals, may therefore be a therapeutic target in fibrotic lung disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号