首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fish populations vary geographically in demography and life history due to environmental and ecological processes and in response to exploitation. However, population dynamic models and stock assessments, used to manage fisheries, rarely explicitly incorporate spatial variation to inform management decisions. Here, we describe extensive geographic variation in several demographic and life history characteristics (e.g., size structure, growth, survivorship, maturation, and sex change) of California sheephead (Semicossyphus pulcher), a temperate rocky reef fish targeted by recreational and commercial fisheries. Fish were sampled from nine locations throughout southern California in 2007-2008. We developed a dynamic size and age-structured model, parameterized separately for each location, to assess the potential cost or benefit in terms of fisheries yield and conservation objectives of changing minimum size limits and/or fishing mortality rates (compared to the status quo). Results indicate that managing populations individually, with location-specific regulations, could increase yield by over 26% while maintaining conservative levels of spawning biomass. While this local management approach would be challenging to implement in practice, we found statistically similar increases in yield could be achieved by dividing southern California into two separate management regions, reflecting geographic similarities in demography. To maximize yield, size limits should be increased by 90 mm in the northern region and held at current levels in the south. We also found that managing the fishery as one single stock (the status quo), but with a size limit 50 mm greater than the current regulations, could increase overall fishery yield by 15%. Increases in size limits are predicted to enhance fishery yield and may also have important ecological consequences for the predatory role of sheephead in kelp forests. This framework for incorporating demographic variation into fisheries models can be exported generally to other species and may aid in identifying the appropriate spatial scales for fisheries management.  相似文献   

2.
Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in the Strait of Sicily, also supporting sustainable economic returns for fishermen if not applied simultaneously for different species.  相似文献   

3.
Industrial tuna fisheries operate in the Indian, Atlantic and Pacific Oceans, but concerns over sustainability and environmental impacts of these fisheries have resulted in increased scrutiny of how they are managed. An important but often overlooked factor in the success or failure of tuna fisheries management is the behaviour of fishers and fishing fleets. Uncertainty in how a fishing fleet will respond to management or other influences can be reduced by anticipating fleet behaviour, although to date there has been little research directed at understanding and anticipating the human dimension of tuna fisheries. The aim of this study was to address gaps in knowledge of the behaviour of tuna fleets, using the Indian Ocean tropical tuna purse seine fishery as a case study. We use statistical modelling to examine the factors that influence the spatial behaviour of the purse seine fleet at broad spatiotemporal scales. This analysis reveals very high consistency between years in the use of seasonal fishing grounds by the fleet, as well as a forcing influence of biophysical ocean conditions on the distribution of fishing effort. These findings suggest strong inertia in the spatial behaviour of the fleet, which has important implications for predicting the response of the fleet to natural events or management measures (e.g., spatial closures).  相似文献   

4.
Fisheries are increasingly understood as complex adaptive systems; but the cultural, behavioral, and cognitive factors that explain spatial and temporal dynamics of fishing effort allocation remain poorly understood. Using Geographic Information Systems (GIS) as a visualization tool, this paper combines catch-per-unit-effort (CPUE) and ethnographic data on the Ecuadorian mangrove cockle fishery to explore patterns in fishing effort and the social production of fishing space. I argue that individual decisions about where, when, and how to fish result in spatial and temporal patterns in effort allocation, ultimately regulating open-access fisheries that typically operate on a first-come, first-served basis. These emergent patterns in the fishing effort are explained by individual-level preferences and adaptations; the development of knowledge and customary norms through the habitual use of resource space by individuals and groups; ecological conditions; and access. New adaptive challenges threaten to undermine such self-organization of open-access systems on larger spatial and temporal scales prompting a likely re-allocation of the fishing effort in the future.  相似文献   

5.
Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest.  相似文献   

6.
We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.  相似文献   

7.

Background

Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management.

Methodology and Principal Findings

With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar.

Conclusions and Significance

This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates a multifaceted fishery with diverse management requirements. The documented spatial scales and processes in the scuba diving fishery emphasize the need for increased regional governance partnerships to implement management that fit the spatial scales and processes of the operation.  相似文献   

8.
Artisanal coastal invertebrate fisheries in Galicia are socio-economically important and ecologically relevant. Their management, however, has been based on models of fish population dynamics appropriate for highly mobile demersal or pelagic resources and for industrial fisheries. These management systems focus on regulating fishing effort, but in coastal ecosystems activities that change or destruct key habitats may have a greater effect on population abundance than does fishing mortality. The Golfo Artabro was analysed as a representative example of a coastal ecosystem in Galicia, and the spider crab Maja squinado used as a model of an exploited coastal invertebrate, for which shallow coastal areas are key habitats for juvenile stages. The commercial legal gillnet fishery for the spider crab harvests adults during their reproductive migrations to deep waters and in their wintering habitats. Illegal fisheries operate in shallow waters. The annual rate of exploitation is >90%, and <10% of the primiparous females reproduce effectively at least once. A simple spatially-explicit cohort model was constructed to simulate the population dynamics of spider crab females. Yield- and egg-per-recruit analyses corresponding to different exploitation regimes were performed to compare management policies directed to control the fishing effort or to protect key habitats. It was found that the protection of juvenile habitats could allow increases in yield and reproductive effort higher than in the present system, with such protection based in the control of the fishing effort of the legal fishery. Additionally, there is an urgent need for alternative research and management strategies in artisanal coastal fisheries based on the implementation of a system of territorial use rights for fishers, the integration of the fishers into assessment and management processes, and the protection of key habitats (marine reserves) as a basic tool for the regulation of the fisheries.  相似文献   

9.
The worldwide depletion of major fish stocks through intensive industrial fishing is thought to have profoundly altered the trophic structure of marine ecosystems. Here we assess changes in the trophic structure of the English Channel marine ecosystem using a 90-year time-series (1920–2010) of commercial fishery landings. Our analysis was based on estimates of the mean trophic level (mTL) of annual landings and the Fishing-in-Balance index (FiB). Food webs of the Channel ecosystem have been altered, as shown by a significant decline in the mTL of fishery landings whilst increases in the FiB index suggest increased fishing effort and fishery expansion. Large, high trophic level species (e.g. spurdog, cod, ling) have been increasingly replaced by smaller, low trophic level fish (e.g. small spotted catsharks) and invertebrates (e.g. scallops, crabs and lobster). Declining trophic levels in fisheries catches have occurred worldwide, with fish catches progressively being replaced by invertebrates. We argue that a network of fisheries closures would help rebalance the trophic status of the Channel and allow regeneration of marine ecosystems.  相似文献   

10.
Artisanal fisheries are a key source of food and income for millions of people, but if poorly managed, fishing can have declining returns as well as impacts on biodiversity. Management interventions such as spatial and temporal closures can improve fishery sustainability and reduce environmental degradation, but may carry substantial short-term costs for fishers. The Lake Alaotra wetland in Madagascar supports a commercially important artisanal fishery and provides habitat for a Critically Endangered primate and other endemic wildlife of conservation importance. Using detailed data from more than 1,600 fisher catches, we used linear mixed effects models to explore and quantify relationships between catch weight, effort, and spatial and temporal restrictions to identify drivers of fisher behaviour and quantify the potential effect of fishing restrictions on catch. We found that restricted area interventions and fishery closures would generate direct short-term costs through reduced catch and income, and these costs vary between groups of fishers using different gear. Our results show that conservation interventions can have uneven impacts on local people with different fishing strategies. This information can be used to formulate management strategies that minimise the adverse impacts of interventions, increase local support and compliance, and therefore maximise conservation effectiveness.  相似文献   

11.
Abstract Establishing permanent ‘no-take’ marine reserves, areas where fishing and all other extractive activities are prohibited, is an attractive but under-utilized tool for fisheries management. Marine reserves could potentially deal with many fishery problems that are not effectively addressed by other traditional management measures; they also offer numerous social, economic, and scientific benefits not directly related to fisheries. Limited but growing research has shown beneficial biological and economic effects of marine reserves on fisheries. More research is needed, especially at larger scales, to determine the ideal marine reserve size, number and location necessary to optimize fisheries productivity and resource conservation. Sufficient evidence is available to justify the expanded use of marine reserves in an adaptive approach to fisheries management.  相似文献   

12.
The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. This study examines the impact of the creation of marine protected areas, from both economic and biological perspectives. The consequences of reserve establishment on the long-run equilibrium fish biomass and fishery catch levels are evaluated. We include reserve size as control variable to maximize catch at equilibrium. A continuous time model is used to simulate the effects of reserve size on fishing catch. Fish movements between the sites is assumed to take place at a faster time scale than the variation of the stock and the change of the fleet size. We take advantage of these two time scales to derive a reduced model governing the dynamics of the total fish stock and the fishing effort. Simulation results suggest that the establishment of a protected marine reserve will always lead to an increase in total fish biomass, an optimal size of a marine reserve can achieve to maximize the catch at equilibrium.  相似文献   

13.
According to fisheries data, lakes are important systems for fish production in the Amazon basin. However, there is no information about the relationship between landscape variables and fishing yield that allows foresight into potential resource exploitation in this environment. The present study aims to evaluate this relationship with the hypothesis: lakes of different shapes give the same fishery yield in the Amazon, after considering the effects of lake size, distance to the river, fishing effort, fuel and ice used. Fishery data from 1994 to 1996 were analyzed with regard to 3228 trips on 50 lakes of the main white water tributaries of the Amazon basin. Analysis of covariance was applied to test this hypothesis. With variables such as fishing grounds access, fishing effort and lake shape the model explained a significant 72% of variabilities in the fisheries yield. Fishing yields among lake systems were different, thus the null hypothesis was rejected (P < 0.05). Results indicate that dendritic lakes far distant from the main river have greater productivity than floodplain lakes because there are more habitats of fish refuge for reproduction and feed available to the fish; there are also more limitations to access by predators.  相似文献   

14.
Understanding the relative impacts of harvesting across an area such as a marine park is vital if the goals of fisheries management are to be met. Given their accessibility, densities of targeted intertidal turbinids should be relatively simple to quantify; however, natural spatial and temporal variability in these populations has hampered this effort. This study aimed to quantify short-term population dynamics of Turbo militaris in relation to current zoning regulations and accessibility. While our results reflected the variability found by other studies, we also detected significantly lower densities at a headland where harvesting is known to occur, and found a trend towards denser aggregations at more remote locations. Importantly, we found that densities at some locations were so low that current fisheries bag limits may be ineffective for protecting populations at local scales. Comparisons between study sites suggest a combination of no-take zoning and inaccessibility may provide the most effective protection for this species. However, a greater understanding of the wider impacts of harvesting, and processes affecting recovery, are essential to ensure sustainable management of this fishery.  相似文献   

15.
Scientific information on reef fish spawning aggregation fisheries is sparse in light of numerous regional declines and extirpations from overexploitation. Fisher interviews of the small-scale commercial mutton snapper (Lutjanus analis) spawning aggregation fishery at Gladden Spit, Belize, suggests a historic decadal decline. The reported trend is supported by analysis of inter-seasonal catch and effort and yield (2000–2002) that reveals a 59% decline in catch per unit effort (CPUE) and a 22% decrease in mean landings per boat. Declining population-level trends are also supported by a significant decrease in inter-annual median lengths of mutton snappers (2000–2006). These findings demonstrate the need for additional life history information that includes length-associated age and details on growth to provide clearer support of the effects on, and responses by, populations following fishing. In view of the historical changes to mutton snapper CPUE and landings at Gladden Spit and the fishery-associated declines in fish spawning aggregations observed globally, a precautionary approach to spawning aggregation management is warranted that provides full protection from fishing to enhance population persistence. The findings also highlight the need for substantially greater enforcement and long-term fisheries monitoring under a comprehensive regional management strategy.  相似文献   

16.
Understanding how fishers make decisions is important for improving management of fisheries. There is debate about the extent to which small-scale fishers follow an ideal free distribution (IFD) – distributing their fishing effort efficiently according to resource availability rather than being influenced by social factors or personal preference. Using detailed data from 1800 fisher catches and from semi-structured interviews with over 700 fishers at Lake Alaotra, the largest inland fishery in Madagascar, we show that fishers generally conform to IFD. However, there were differences in catch: effort relationships between fishers using different gear types as well as other revealing deviations from the predictions of IFD. Fishers report routine as the primary determinant of their choice of fishing location, explaining why they do not quickly respond to changes in catch at a site. Understanding the influences on fishers’ spatial behaviour will allow better estimates of costs of fishing policies on resource users, and help predict their likely responses. This can inform management strategies to minimise the negative impacts of interventions, increasing local support for and compliance with rules.  相似文献   

17.
Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km2) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.  相似文献   

18.
The net movement of individuals from marine reserves (also known as no-take marine protected areas) to the remaining fishing grounds is known as spillover and is frequently used to promote reserves to fishers on the grounds that it will benefit fisheries. Here we consider how mismanaged a fishery must be before spillover from a reserve is able to provide a net benefit for a fishery. For our model fishery, density of the species being harvested becomes higher in the reserve than in the fished area but the reduction in the density and yield of the fished area was such that the net effect of the closure was negative, except when the fishery was mismanaged. The extent to which effort had to exceed traditional management targets before reserves led to a spillover benefit varied with rates of growth and movement of the model species. In general, for well-managed fisheries, the loss of yield from the use of reserves was less for species with greater movement and slower growth. The spillover benefit became more pronounced with increasing mis-management of the stocks remaining available to the fishery. This model-based result is consistent with the literature of field-based research where a spillover benefit from reserves has only been detected when the fishery is highly depleted, often where traditional fisheries management controls are absent. We conclude that reserves in jurisdictions with well-managed fisheries are unlikely to provide a net spillover benefit.  相似文献   

19.
结合南极磷虾渔业科学观察员收集的渔业数据和海洋环境数据,本研究利用地理加权回归模型(GWR),分析了具有空间属性的虾群深度和离岸距离两个因子,以及海水表温对南设得兰群岛北侧水域南极磷虾渔场空间分布的影响.结果表明:各年南极磷虾渔业单位捕捞努力量渔获量(CPUE)在空间上的分布无显著的集聚性;2010和2013年,3个因子之间存在空间自相关性(正相关),而2012和2016年则无自相关性.GWR模型结果显示,3个因子对CPUE的空间分布具有不同程度的影响,影响程度大小依次为虾群深度>离岸距离>温度.拟合结果发现,南设得兰群岛东、西两侧水域中表温对CPUE空间分布的影响与其他两个因子具有相反的趋势.虾群深度和离岸距离对CPUE的空间效应主要表现为负相关,但存在着年际和区域性差异.本研究结果可为南极磷虾渔场形成机制研究提供方法上的参考.  相似文献   

20.
Marine reserve effects on fishery profit   总被引:1,自引:0,他引:1  
Some studies suggest that fishery yields can be higher with reserves than under conventional management. However, the economic performance of fisheries depends on economic profit, not fish yield. The predictions of higher yields with reserves rely on intensive fishing pressures between reserves; the exorbitant costs of harvesting low-density populations erode profits. We incorporated this effect into a bioeconomic model to evaluate the economic performance of reserve-based management. Our results indicate that reserves can still benefit fisheries, even those targeting species that are expensive to harvest. However, in contrast to studies focused on yield, only a moderate proportion of the coast in reserves (with moderate harvest pressures outside reserves) is required to maximize profit. Furthermore, reserve area and harvest intensity can be traded off with little impact on profits, allowing for management flexibility while still providing higher profit than attainable under conventional management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号