首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WARP is a novel member of the von Willebrand factor A domain superfamily of extracellular matrix proteins that is expressed by chondrocytes. WARP is restricted to the presumptive articular cartilage zone prior to joint cavitation and to the articular cartilage and fibrocartilaginous elements in the joint, spine, and sternum during mouse embryonic development. In mature articular cartilage, WARP is highly specific for the chondrocyte pericellular microenvironment and co-localizes with perlecan, a prominent component of the chondrocyte pericellular region. WARP is present in the guanidine-soluble fraction of cartilage matrix extracts as a disulfide-bonded multimer, indicating that WARP is a strongly interacting component of the cartilage matrix. To investigate how WARP is integrated with the pericellular environment, we studied WARP binding to mouse perlecan using solid phase and surface plasmon resonance analysis. WARP interacts with domain III-2 of the perlecan core protein and the heparan sulfate chains of the perlecan domain I with K(D) values in the low nanomolar range. We conclude that WARP forms macromolecular structures that interact with perlecan to contribute to the assembly and/or maintenance of "permanent" cartilage structures during development and in mature cartilages.  相似文献   

2.
In articular cartilage, type VI collagen is concentrated in the pericellular matrix compartment. During protein synthesis and processing at least the alpha3(VI) chain undergoes significant posttranslational modification and cleavage. In this study, we investigated the processing of type VI collagen in articular cartilage. Immunostaining with a specific polyclonal antiserum against the C5 domain of alpha3(VI) showed strong cellular staining seen in nearly all chondrocytes of articular cartilage. Confocal laser-scanning microscopy and immunoelectron microscopy allowed localization of this staining mainly to the cytoplasm and the immediate pericellular matrix. Double-labeling experiments showed a narrow overlap of the C5 domain and the pericellular mature type VI collagen. Our results suggest that at least in human adult articular cartilage the C5 domain of alpha3(VI) collagen is synthesized and initially incorporated into the newly formed type VI collagen fibrils, but immediately after secretion is cut off and is not present in the mature pericellular type VI matrix of articular cartilage.  相似文献   

3.
WARP is a recently identified extracellular matrix molecule with restricted expression in permanent cartilages and a distinct subset of basement membranes in peripheral nerves, muscle, and the central nervous system vasculature. WARP interacts with perlecan, and we also demonstrate here that WARP binds type VI collagen, suggesting a function in bridging connective tissue structures. To understand the in vivo function of WARP, we generated a WARP-deficient mouse strain. WARP-null mice were healthy, viable, and fertile with no overt abnormalities. Motor function and behavioral testing demonstrated that WARP-null mice exhibited a significantly delayed response to acute painful stimulus and impaired fine motor coordination, although general motor function was not affected, suggesting compromised peripheral nerve function. Immunostaining of WARP-interacting ligands demonstrated that the collagen VI microfibrillar matrix was severely reduced and mislocalized in peripheral nerves of WARP-null mice. Further ultrastructural analysis revealed reduced fibrillar collagen deposition within the peripheral nerve extracellular matrix and abnormal partial fusing of adjacent Schwann cell basement membranes, suggesting an important function for WARP in stabilizing the association of the collagenous interstitial matrix with the Schwann cell basement membrane. In contrast, other WARP-deficient tissues such as articular cartilage, intervertebral discs, and skeletal muscle showed no detectable abnormalities, and basement membranes formed normally. Our data demonstrate that although WARP is not essential for basement membrane formation or musculoskeletal development, it has critical roles in the structure and function of peripheral nerves.WARP (von Willebrand A domain-related protein) is a recently described member of the von Willebrand factor type A domain (VWA2 domain) superfamily of extracellular matrix (ECM) molecules, adhesion proteins, and cell surface receptors (for review, see Ref. 1). The WARP protein is encoded by the Vwa1 (von Willebrand factor A domain-containing 1) gene and comprises a single N-terminal VWA domain containing a putative metal ion-dependent adhesion site (MIDAS) motif, two fibronectin type III repeats, and a unique C-terminal domain that contributes to WARP multimer formation (2, 3). Like many other VWA domain-containing extracellular molecules, WARP was predicted to participate in protein-protein interactions and in the formation of supramolecular structures. Recently WARP has been shown to interact with the heparan sulfate proteoglycan perlecan (3), and in the present study we identify type VI collagen as a ligand for WARP.WARP has a restricted distribution in developing cartilage tissues, where it is expressed at sites of joint cavitation and articular cartilage formation rather than cartilage structures that will undergo endochondral ossification (3). In adult tissues, WARP is highly restricted to the chondrocyte pericellular matrix in articular cartilage and fibrocartilages, where it co-localizes with perlecan and collagen VI (3). Several of the major basement membrane components have been found in the chondrocyte pericellular matrix, suggesting that this structure may be the functional equivalent of a basement membrane in cartilage tissues (4). Consistent with this hypothesis, recent data from our laboratory have demonstrated that WARP is a component of the basement membrane in a limited subset of tissues including the apical ectodermal ridge, the endomysium surrounding muscle fibers, the vasculature of the central nervous system, and the endoneurium of peripheral nerves (5). The principal components of basement membranes are type IV collagen, laminins, nidogens, and proteoglycans including perlecan; however, the composition, structure, and biological properties of basement membranes can differ considerably between different tissues (6, 7). Different isoforms of the major components contribute to the heterogeneity of basement membranes, but the contribution of quantitatively minor components to particular subtypes of basement membranes and their interactions with surrounding cells and ECM structures are poorly understood (8, 9).We, therefore, have generated mice with a targeted disruption of the WARP locus to determine the consequences of WARP deficiency on skeletal development and basement membrane formation. The homozygous null mice are viable, fertile, and do not exhibit overt abnormalities compared with wild type littermates. Neurological testing revealed that WARP-null mice exhibit a delayed response to acute painful stimulus and a disturbance in fine motor coordination, although general motor function is not impaired. Consistent with these findings, immunohistochemical analysis of peripheral nerves from WARP-null mice revealed that the collagen VI microfibrillar matrix was severely reduced and mislocalized compared with wild type mice. Furthermore, electron microscopic examination of the sciatic nerve demonstrated a reduction in the collagen I ECM and the unusual partial fusing of the basement membranes of neighboring axons. These data suggest an important role for WARP in organizing the peripheral nerve ECM and provides evidence for tissue-specific differences in the role of WARP in the assembly and/or integration of the ECM. In addition, our studies provide further evidence for the critical role of ECM structure and organization in nerve function.  相似文献   

4.
Chondrocytes are surrounded by a narrow pericellular matrix (PCM) that is biochemically, structurally, and biomechanically distinct from the bulk extracellular matrix (ECM) of articular cartilage. While the PCM is often defined by the presence of type VI collagen, other macromolecules such as perlecan, a heparan sulfate (HS) proteoglycan, are also exclusively localized to the PCM in normal cartilage and likely contribute to PCM structural integrity and biomechanical properties. Though perlecan is essential for normal cartilage development, its exact role in the PCM is unknown. The objective of this study was to determine the biomechanical role of perlecan in the articular cartilage PCM in situ and its potential as a defining factor of the PCM. To this end, atomic force microscopy (AFM) stiffness mapping was combined with dual immunofluorescence labeling of cryosectioned porcine cartilage samples for type VI collagen and perlecan. While there was no difference in overall PCM mechanical properties between type VI collagen- and perlecan-based definitions of the PCM, within the PCM, interior regions containing both type VI collagen and perlecan exhibited lower elastic moduli than more peripheral regions rich in type VI collagen alone. Enzymatic removal of HS chains from perlecan with heparinase III increased PCM elastic moduli both overall and locally in interior regions rich in both perlecan and type VI collagen. Heparinase III digestion had no effect on ECM elastic moduli. Our findings provide new evidence for perlecan as a defining factor in both the biochemical and biomechanical properties of the PCM.  相似文献   

5.
The pericellular matrix of articular cartilage has been shown to regulate the mechanical environment of chondrocytes. However, little is known about the mechanical role of collagen fibrils in the pericellular matrix, and how fibrils might help modulate strains acting on chondrocytes when cartilage is loaded. The primary objective was to clarify the effect of pericellular collagen fibrils on cell volume changes and strains during cartilage loading. Secondary objectives were to investigate the effects of pericellular fixed charges and fluid on cell responses. A microstructural model of articular cartilage, in which chondrocytes and pericellular matrices were represented with depth-dependent structural and morphological properties, was created. The extracellular matrix and pericellular matrices were modeled as fibril-reinforced, biphasic materials with swelling capabilities, while chondrocytes were assumed to be isotropic and biphasic with swelling properties. Collagen fibrils in the extracellular matrix were represented with an arcade-like architecture, whereas pericellular fibrils were assumed to run tangential to the cell surface. In the early stages of a stress-relaxation test, pericellular fibrils were found to sensitively affect cell volume changes, even producing a reversal from increasing to decreasing cell volume with increasing fibril stiffness in the superficial zone. Consequently, steady-state volume of the superficial zone cell decreased with increasing pericellular fibril stiffness. Volume changes in the middle and deep zone chondrocytes were smaller and opposite to those observed in the superficial zone chondrocyte. An increase in the pericellular fixed charge density reduced cell volumes substantially in every zone. The sensitivity of cell volume changes to pericellular fibril stiffness suggests that pericellular fibrils play an important, and as of yet largely neglected, role in regulating the mechanical environment of chondrocytes, possibly affecting matrix synthesis during cartilage development and degeneration, and affecting biosynthetic responses associated with articular cartilage loading.  相似文献   

6.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

7.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

8.
Collagen of articular cartilage   总被引:1,自引:0,他引:1  
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

9.

Background

Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.

Methodology/Principal Findings

This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG) content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days) were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan). Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.

Conclusions/Significance

The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is suggested that exogenous stimulation may be necessary after 4 wks to further augment the functionality of developing constructs.  相似文献   

10.
Martin JA  Buckwalter JA 《Biorheology》2000,37(1-2):129-140
Throughout life chondrocytes maintain the articular cartilage matrix by replacing degraded macromolecules and respond to focal cartilage injury or degeneration by increasing local synthesis activity. These observations suggest that mechanisms exist within articular cartilage that stimulate chondrocyte anabolic activity in response to matrix degradation or damage. An important cartilage anabolic factor, insulin-like growth factor I (IGF-I), appears to have a role in stimulating chondrocyte anabolic activity. Although IGF-I is ubiquitous, its bioavailability is controlled by a class of secreted proteins, IGF binding proteins (IGFPBs). Of the six known IGFPBs, IGFBP-3 is the most abundant in human articular cartilage. We recently found that with increasing age, articular chondrocytes increase their expression of IGFBP-3. This observation led us to investigate the potential role of IGFBP-3 in chondrocyte-matrix interactions. Using immunofluorescent staining and confocal microscopy we found that IGFBP-3 accumulates with increasing age in the chondrocyte territorial matrix where it co-localizes with fibronectin, but not with tenascin-C or type VI collagen. Using purified proteins we demonstrated that IGFBP-3 binds to fibronectin in a dose dependent manner, but not to tenascin-C. In vitro studies showed that IGFBP-3 alone inhibited chondrocyte synthetic activity while intact fibronectin alone significantly stimulated activity. When fibronectin and IGFBP-3 were combined we found that the inhibitory activity of low concentrations of IGFPB-3 was enhanced. These observations indicate that in mature articular cartilage IGF-I is stored in the chondrocyte territorial matrix through binding to a complex of IGFPB-3 and intact fibronectin. Storage of IGF-I of the territorial matrix may help maintain a relatively constant level of available IGF-I and the local increase in matrix synthesis following matrix damage may result from release of IGF-I. This mechanism may have an important role in maintaining and repairing articular cartilage and failure of this mechanism may lead to progressive articular cartilage degeneration.  相似文献   

11.
Type VI collagen appears central to the maintenance of tissue integrity. In adult articular cartilage, type VI collagen is preferentially localised in the chondron where it may be involved in cell attachment. In actively remodelling developing cartilage, the distribution is less certain. We have used confocal immunohistochemistry and in situ hybridisation to investigate type VI collagen distribution in third trimester bovine proximal femoral epiphyses. In general, type VI collagen immunofluorescence was concentrated in the chondrocyte pericellular matrix, with staining intensity strongest in regions which persist to maturity and weakest in regions that remodel during development. Type VI collagen was also present in cartilage canals. In the growth plate and around the secondary centre of ossification, the intensity of type VI collagen stain rapidly decreased with chondrocyte maturation and was absent at hypertrophy, except where canal branches penetrated the growth plate and stain was retained around the adjacent chondrocytes. In situ hybridisation confirmed the presence of type VI collagen mRNA in cartilage canal mesenchymal cells but the signal was low in chondrocytes, suggesting minimal levels of synthesis and turnover. The results are consistent with a role for type VI collagen in stabilising the extracellular matrix during development.  相似文献   

12.
To test the hypothesis that a perturbation of endoplasmic reticulum (ER) function is involved in the pathogenesis of osteoarthritis (OA), articular cartilage was isolated from non-OA patients secondary to resection of osteo- or chondrosarcomas. Intra-joint samples of minimal and advanced osteoarthritic cartilage were isolated from patients undergoing total knee arthroplasty and scored for disease severity. Glucose-regulated protein-78 (grp78) and bcl-2–associated athanogene-1 (bag-1) were detected via immunofluorescence as markers of non-homeostatic ER function. Additionally, the expression of type VI collagen and its integrin receptor, NG2, was determined to examine cartilage matrix health and turnover. There was an upregulation of grp78 in advanced OA, and variable expression in minimal OA. Non-OA cartilage was consistently grp78 negative. The downstream regulator bag-1 was also upregulated in OA compared with normal cartilage. Collagen VI was mainly cell-associated in non-OA cartilage, with a more widespread distribution observed in OA cartilage along with increased intracellular staining intensity. The collagen VI integral membrane proteoglycan receptor NG2 was downregulated in advanced OA compared with its patient-matched minimally involved cartilage sample. These results suggest that chondrocytes exhibit ER stress during OA, in association with upregulation of a large secreted molecule, type VI collagen. (J Histochem Cytochem 57:923–931, 2009)  相似文献   

13.
The chondron is a distinct structure in articular cartilage that consists of the chondrocyte and its pericellular matrix (PCM), a narrow tissue region surrounding the cell that is distinguished by type VI collagen and a high glycosaminoglycan concentration relative to the extracellular matrix. We present a theoretical mechano-chemical model for the passive volumetric response of an isolated chondron under osmotic loading in a simple salt solution at equilibrium. The chondrocyte is modeled as an ideal osmometer and the PCM model is formulated using triphasic mixture theory. A mechano-chemical chondron model is obtained assuming that the chondron boundary is permeable to both water and ions, while the chondrocyte membrane is selectively permeable to only water. For the case of a neo-Hookean PCM constitutive law, the model is used to conduct a parametric analysis of cell and chondron deformation under hyper- and hypo-osmotic loading. In combination with osmotic loading experiments on isolated chondrons, model predictions will aid in determination of pericellular fixed charge density and its relative contribution to PCM mechanical properties.  相似文献   

14.
This paper describes temporal changes in the metabolism and distribution of newly synthesized aggrecan and the organization of the extracellular matrix when explant cultures of articular cartilage maintained in the presence of fetal calf serum were exposed to retinoic acid for varying periods of time. Explant cultures of articular cartilage were incubated with radiolabeled sulfate prior to exposure to retinoic acid. The radiolabeled and chemical aggrecan present in the tissue and appearing in the culture medium was studied kinetically. Changes in the localization of radiolabeled aggrecan within the extracellular matrix were monitored by autoradiography in relation to type VI collagen distribution in the extracellular matrix. In control cultures where tissue levels of aggrecan remain constant the newly synthesized aggrecan remained closely associated with the territorial matrix surrounding the chondrocytes. Exposure of cultures to retinoic acid for the duration of the experiment, resulted in the extensive loss of aggrecan from the tissue and the redistribution of the remaining radiolabeled aggrecan from the chondron and territorial matrix into the inter-territorial matrix. These changes preceded alterations in the organization of type VI collagen in the extracellular matrix that involved the remodeling of the chondron and the appearance of type VI collagen in the inter-territorial matrix; there was also evidence of chondrocyte proliferation and clustering. In cartilage explant cultures exposed to retinoic acid for 24 h there was no loss of aggrecan from the matrix but there was an extensive redistribution of the radiolabeled aggrecan into the inter-territorial matrix. This work shows that maintenance of the structure and organization of the extracellular matrix that comprises the chondron and pericellular microenvironment of chondrocytes in articular cartilage is important for the regulation of the distribution of newly synthesized aggrecan monomers within the tissue.  相似文献   

15.
The pericellular region of the extracellular matrix (ECM) contains collagens, proteoglycans and other noncollagenous matrix proteins. Although such specialized pericellular ECM has been well studied in articular cartilage, little is known about the pericellular matrix in the disc. In the study reported here, pericellular matrix was studied in annulus tissue from 52 subjects ranging in age from 17-74 years. In aging/degenerating intervertebral discs, cells were identified that formed a distinctive cocoon of encircling pericellular ECM. Immunohistochemical studies identified types I, II, III and VI collagen in these pericellular sites with diverse morphological features. Similar types of changes in the pericellular matrix were observed in both surgical specimens and control donor discs. Results indicate the need for future studies to address why such specialized matrix regions form around certain disc cells and to determine the consequences of these unusual matrix regions on annular lamellar organization and function.  相似文献   

16.
17.
The pericellular region of the extracellular matrix (ECM) contains collagens, proteoglycans and other noncollagenous matrix proteins. Although such specialized pericellular ECM has been well studied in articular cartilage, little is known about the pericellular matrix in the disc. In the study reported here, pericellular matrix was studied in annulus tissue from 52 subjects ranging in age from 17-74 years. In aging/degenerating intervertebral discs, cells were identified that formed a distinctive cocoon of encircling pericellular ECM. Immunohistochemical studies identified types I, II, III and VI collagen in these pericellular sites with diverse morphological features. Similar types of changes in the pericellular matrix were observed in both surgical specimens and control donor discs. Results indicate the need for future studies to address why such specialized matrix regions form around certain disc cells and to determine the consequences of these unusual matrix regions on annular lamellar organization and function.  相似文献   

18.
Although the pericellular matrix (PCM) plays a central role in the communication between chondrocytes and extracellular matrix, its composition is largely unknown. In this study, the PCM was investigated with a proteomic approach using chondrons, which are enzymatically isolated constructs including the chondrocyte and its surrounding PCM. Chondrons and chondrocytes alone were isolated from human articular cartilage. Proteins extracted from chondrons and chondrocytes were used for two-dimensional electrophoresis. Protein spots were quantitatively compared between chondron and chondrocyte gels. Cellular proteins, which had similar density between chondron and chondrocyte gels, did not proceed for analysis. Since chondrons only differ from chondrocytes in association of the PCM, protein spots in the chondron gels that had higher quantity than that in the chondrocyte gels were selected as candidates of the PCM components and processed for mass spectrometry. Among 15 identified peptides, several were fragments of the three type VI collagen chains (α-1, α-2, and α-3). Other identified PCM proteins included triosephosphate isomerase, transforming growth factor-β induced protein, peroxiredoxin-4, ADAM (A disintegrin and metalloproteinases) 28, and latent-transforming growth factor beta-binding protein-2. These PCM components were verified with immunohisto(cyto)chemistry for localization in the PCM region of articular cartilage. The abundance of type VI collagen in the PCM emphasizes its importance to the microenvironment of chondrocytes. Several proteins were localized in the PCM of chondrocytes for the first time and that warrants further investigation for their functions in cartilage biology.  相似文献   

19.
WARP is a recently described member of the von Willebrand factor A domain superfamily of extracellular matrix proteins, and is encoded by the Vwa1 gene. We have previously shown that WARP is a multimeric component of the chondrocyte pericellular matrix in articular cartilage and intervertebral disc, where it interacts with the basement membrane heparan sulfate proteoglycan perlecan. However, the tissue-specific expression of WARP in non-cartilaginous tissues and its localization in the extracellular matrix of other perlecan-containing tissues have not been analyzed in detail. To visualize WARP-expressing cells, we generated a reporter gene knock-in mouse by targeted replacement of the Vwa1 gene with beta-galactosidase. Analysis of reporter gene expression and WARP protein localization by immunostaining demonstrates that WARP is a component of a limited number of distinct basement membranes. WARP is expressed in the vasculature of neural tissues and in basement membrane structures of the peripheral nervous system. Furthermore, WARP is also expressed in the apical ectodermal ridge of developing limb buds, and in skeletal and cardiac muscle. These findings are the first evidence for WARP expression in non-cartilaginous tissues, and the identification of WARP as a component of a limited range of specialized basement membranes provides further evidence for the heterogeneous composition of basement membranes between different tissues.  相似文献   

20.
《The Journal of cell biology》1984,99(6):1960-1969
Chondrocytes isolated from bovine articular cartilage were plated at high density and grown in the presence or absence of ascorbate. Collagen and proteoglycans, the major matrix macromolecules synthesized by these cells, were isolated at times during the course of the culture period and characterized. In both control and ascorbate-treated cultures, type II collagen and cartilage proteoglycans accumulated in the cell-associated matrix. Control cells secreted proteoglycans and type II collagen into the medium, whereas with time in culture, ascorbate-treated cells secreted an increasing proportion of types I and III collagens into the medium. The ascorbate-treated cells did not incorporate type I collagen into the cell-associated matrix, but continued to accumulate type II collagen in this compartment. Upon removal of ascorbate, the cells ceased to synthesize type I collagen. Morphological examination of ascorbate-treated and control chondrocyte culture revealed that both collagen and proteoglycans were deposited into the extracellular matrix. The ascorbate-treated cells accumulated a more extensive matrix that was rich in collagen fibrils and ruthenium red-positive proteoglycans. This study demonstrated that although ascorbate facilitates the formation of an extracellular matrix in chondrocyte cultures, it can also cause a reversible alteration in the phenotypic expression of those cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号