首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Risk factors for human disease emergence   总被引:24,自引:0,他引:24  
A comprehensive literature review identifies 1415 species of infectious organism known to be pathogenic to humans, including 217 viruses and prions, 538 bacteria and rickettsia, 307 fungi, 66 protozoa and 287 helminths. Out of these, 868 (61%) are zoonotic, that is, they can be transmitted between humans and animals, and 175 pathogenic species are associated with diseases considered to be 'emerging'. We test the hypothesis that zoonotic pathogens are more likely to be associated with emerging diseases than non-emerging ones. Out of the emerging pathogens, 132 (75%) are zoonotic, and overall, zoonotic pathogens are twice as likely to be associated with emerging diseases than non-zoonotic pathogens. However, the result varies among taxa, with protozoa and viruses particularly likely to emerge, and helminths particularly unlikely to do so, irrespective of their zoonotic status. No association between transmission route and emergence was found. This study represents the first quantitative analysis identifying risk factors for human disease emergence.  相似文献   

2.
宠物是多种人兽共患病病原的宿主和传播媒介,由于传统宠物、另类宠物和进口宠物的增多,宠物来源的感染性疾病有了高发的趋势。本文总结了狗、猫、啮齿类、鸟类、鱼和爬行类宠物可能带有的人兽共患病病原,引发的疾病和传播途径。并概括了防控宠物源性感染性疾病的防控措施。  相似文献   

3.
The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies.  相似文献   

4.
BackgroundAlthough vector-borne zoonotic diseases are a major public health threat globally, they are usually neglected, especially among resource-constrained countries, including those in sub-Saharan Africa. This scoping review examined the current knowledge and identified research gaps of vector-borne zoonotic pathogens in Zambia.Methods and findingsMajor scientific databases (Web of Science, PubMed, Scopus, Google Scholar, CABI, Scientific Information Database (SID)) were searched for articles describing vector-borne (mosquitoes, ticks, fleas and tsetse flies) zoonotic pathogens in Zambia. Several mosquito-borne arboviruses have been reported including Yellow fever, Ntaya, Mayaro, Dengue, Zika, West Nile, Chikungunya, Sindbis, and Rift Valley fever viruses. Flea-borne zoonotic pathogens reported include Yersinia pestis and Rickettsia felis. Trypanosoma sp. was the only tsetse fly-borne pathogen identified. Further, tick-borne zoonotic pathogens reported included Crimean-Congo Haemorrhagic fever virus, Rickettsia sp., Anaplasma sp., Ehrlichia sp., Borrelia sp., and Coxiella burnetii.ConclusionsThis study revealed the presence of many vector-borne zoonotic pathogens circulating in vectors and animals in Zambia. Though reports of human clinical cases were limited, several serological studies provided considerable evidence of zoonotic transmission of vector-borne pathogens in humans. However, the disease burden in humans attributable to vector-borne zoonotic infections could not be ascertained from the available reports and this precludes the formulation of national policies that could help in the control and mitigation of the impact of these diseases in Zambia. Therefore, there is an urgent need to scale-up “One Health” research in emerging and re-emerging infectious diseases to enable the country to prepare for future epidemics, including pandemics.  相似文献   

5.
Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps.  相似文献   

6.
Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1-4 drugs and 27% (128/468) resistant to 5-13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beachgoers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health.  相似文献   

7.
Ectoparasite and epifaunistic arthropod biodiversity and infestation parameters were compared between 2 sympatric small rodent species, the cotton mouse (Peromyscus gossypinus (Le Conte)) and golden mouse (Ochrotomys nuttalli (Harlan)), in southern Georgia from 1992 to 2003. Because the cotton mouse is known to be a reservoir of more vector-borne zoonotic pathogens than the golden mouse, we hypothesized that it would be parasitized by more ectoparasites that are known to be vectors of these pathogens. Cotton mice (n = 202) were parasitized by 19 species of arthropods, whereas golden mice (n = 46) were parasitized by 12 species. Eleven species of arthropods were recovered from both host species, whereas 7 were recorded only from cotton mice, and 1 species only from golden mice. Infestation prevalences (percent of mice parasitized) were significantly higher for 1 species of arthropod (the tropical rat mite Ornithonyssus bacoti (Hirst)) infesting cotton mice and for 4 species (the flea Peromyscopsylla scotti Fox and the mites Glycyphagus hypudaei Koch, Androlaelaps casalis (Berlese), and Androlaelaps fahrenholzi (Berlese)) infesting golden mice. Mean intensities (mean per infested mouse) were significantly higher for 2 species (the flea Orchopeas leucopus (Baker) and the blacklegged tick Ixodes scapularis Say) infesting cotton mice and for 2 species (G. hypudaei and A. fahrenholzi) infesting golden mice. Ectoparasites that are known to be vectors of zoonotic pathogens were significantly more common on cotton mice than on golden mice. These ectoparasites included the rhopalopsyllid flea Polygenis gwyni (Fox), a vector of the agent of murine typhus; I. scapularis, the principal vector of the agents of Lyme borreliosis, human granulocytic ehrlichiosis, and human babesiosis; and O. bacoti, a laboratory vector of several zoonotic pathogens. However, 2 species of ixodid ticks that can transmit zoonotic pathogens were recovered from both host species. These were the American dog tick Dermacentor variabilis (Say), the principal vector of the agent of Rocky Mountain spotted fever in eastern North America, and Ixodes minor Neumann, an enzootic vector of the agent of Lyme borreliosis. Overall, the cotton mouse was parasitized by significantly more ectoparasites that are known to be vectors of zoonotic pathogens than was the golden mouse. These data support the hypothesis that the cotton mouse has greater epidemiological importance for zoonotic vector-borne pathogen transmission than does the golden mouse.  相似文献   

8.
Free-ranging nonhuman primates are frequent sources of zoonotic pathogens due to their physiologic similarity and in many tropical regions, close contact with humans. Many high-risk disease transmission interfaces have not been monitored for zoonotic pathogens due to difficulties inherent to invasive sampling of free-ranging wildlife. Non-invasive surveillance of nonhuman primates for pathogens with high potential for spillover into humans is therefore critical for understanding disease ecology of existing zoonotic pathogen burdens and identifying communities where zoonotic diseases are likely to emerge in the future. We developed a non-invasive oral sampling technique using ropes distributed to nonhuman primates to target viruses shed in the oral cavity, which through bite wounds and discarded food, could be transmitted to people. Optimization was performed by testing paired rope and oral swabs from laboratory colony rhesus macaques for rhesus cytomegalovirus (RhCMV) and simian foamy virus (SFV) and implementing the technique with free-ranging terrestrial and arboreal nonhuman primate species in Uganda and Nepal. Both ubiquitous DNA and RNA viruses, RhCMV and SFV, were detected in oral samples collected from ropes distributed to laboratory colony macaques and SFV was detected in free-ranging macaques and olive baboons. Our study describes a technique that can be used for disease surveillance in free-ranging nonhuman primates and, potentially, other wildlife species when invasive sampling techniques may not be feasible.  相似文献   

9.
J Hamilton 《CMAJ》1996,155(4):413-418
Although zoonotic diseases are generally rare in Canada, a wide range of pathogens can be transmitted from animal reservoirs to humans through insect vectors or direct contact with wild and domestic animals. Across the country researchers with backgrounds ranging from wildlife biology to parasitology and epidemiology are tracking a variety of zoonotic diseases, some of which are causing increasing concern among public health officials.  相似文献   

10.
Interspecies transmission of pathogens may result in the emergence of new infectious diseases in humans as well as in domestic and wild animals. Genomics tools such as high-throughput sequencing, mRNA expression profiling, and microarray-based analysis of single nucleotide polymorphisms are providing unprecedented ways to analyze the diversity of the genomes of emerging pathogens as well as the molecular basis of the host response to them. By comparing and contrasting the outcomes of an emerging infection with those of closely related pathogens in different but related host species, we can further delineate the various host pathways determining the outcome of zoonotic transmission and adaptation to the newly invaded species. The ultimate challenge is to link pathogen and host genomics data with biological outcomes of zoonotic transmission and to translate the integrated data into novel intervention strategies that eventually will allow the effective control of newly emerging infectious diseases.  相似文献   

11.
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic‐resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant‐based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant‐based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant‐based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.  相似文献   

12.
Many emerging infectious diseases in human populations are associated with zoonotic origins. Attention has often focused on wild animal reservoirs, but most zoonotic pathogens of recent concern to human health either originate in, or are transferred to, human populations from domesticated animals raised for human consumption. Thus, the ecological context of emerging infectious disease comprises two overlapping ecosystems: the natural habitats and populations of wild animals, and the anthropogenically controlled habitats and populations of domesticated species. Intensive food animal production systems and their associated value chains dominate in developed countries and are increasingly important in developing countries. These systems are characterized by large numbers of animals being raised in confinement with high throughput and rapid turnover. Although not typically recognized as such, industrial food animal production generates unique ecosystems—environments that may facilitate the evolution of zoonotic pathogens and their transmission to human populations. It is often assumed that confined food animal production reduces risks of emerging zoonotic diseases. This article provides evidence suggesting that these industrial systems may increase animal and public health risks unless there is recognition of the specific biosecurity and biocontainment challenges of the industrial model. Moreover, the economic drivers and constraints faced by the industry and its participants must be fully understood in order to inform preventative policy. In order to more effectively reduce zoonotic disease risk from industrial food animal production, private incentives for the implementation of biosecurity must align with public health interests.  相似文献   

13.
《Trends in microbiology》2002,10(10):s3-s7
Emerging and re-emerging pathogens present a huge challenge to human and veterinary medicine. Emergence is most commonly associated with ecological change, and specific risk factors are related to the type of pathogen, route of transmission and host range. The biological determinants of host range remain poorly understood but most pathogens can infect multiple hosts, and three-quarters of emerging human pathogens are zoonotic. Surveillance is a key defence against emerging pathogens but will often need to be integrated across human, domestic animal and wildlife populations.  相似文献   

14.
Experimental and Applied Acarology - Ixodid ticks represent vectors and reservoirs for a broad range of zoonotic pathogens. Collected ticks from field studies are therefore usually stored in...  相似文献   

15.
  1. Zoonotic pathogens and parasites that are transmitted from vertebrates to humans are a major public health risk with high associated global economic costs. The spread of these pathogens and risk of transmission accelerate with recent anthropogenic land-use changes (LUC) such as deforestation, urbanisation, and agricultural intensification, factors that are expected to increase in the future due to human population expansion and increasing demand for resources.
  2. We systematically review the literature on anthropogenic LUC and zoonotic diseases, highlighting the most prominent mammalian reservoirs and pathogens, and identifying avenues for future research.
  3. The majority of studies were global reviews that did not focus on specific taxa. South America and Asia were the most-studied regions, while the most-studied LUC was urbanisation. Livestock were studied more within the context of agricultural intensification, carnivores with urbanisation and helminths, bats with deforestation and viruses, and primates with habitat fragmentation and protozoa.
  4. Research into specific animal reservoirs has improved our understanding of how the spread of zoonotic diseases is affected by LUC. The behaviour of hosts can be altered when their habitats are changed, impacting the pathogens they carry and the probability of disease spreading to humans. Understanding this has enabled the identification of factors that alter the risk of emergence (such as virulence, pathogen diversity, and ease of transmission). Yet, many pathogens and impacts of LUC other than urbanisation have been understudied.
  5. Predicting how zoonotic diseases emerge and spread in response to anthropogenic LUC requires more empirical and data synthesis studies that link host ecology and responses with pathogen ecology and disease spread. The link between anthropogenic impacts on the natural environment and the recent COVID-19 pandemic highlights the urgent need to understand how anthropogenic LUC affects the risk of spillover to humans and spread of zoonotic diseases originating in mammals.
  相似文献   

16.
Fereidouni  Sasan  Munoz  Olga  Von Dobschuetz  Sophie  De Nardi  Marco 《EcoHealth》2016,13(1):161-170
EcoHealth - Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens...  相似文献   

17.
Mycopathologia - Wildlife animals are recognized as reservoirs for zoonotic fungi and their faeces might play an important role in introducing pathogens into the environment. Thought wild boar (Sus...  相似文献   

18.
Emerging infectious diseases (EIDs) in wildlife are major threats both to human health and to biodiversity conservation. An estimated 71.8 % of zoonotic EID events are caused by pathogens in wildlife and the incidence of such diseases is increasing significantly in humans. In addition, human diseases are starting to infect wildlife, especially non-human primates. The chimpanzee is an endangered species that is threatened by human activity such as deforestation, poaching, and human disease transmission. Recently, several respiratory disease outbreaks that are suspected of having been transmitted by humans have been reported in wild chimpanzees. Therefore, we need to study zoonotic pathogens that can threaten captive chimpanzees in primate research institutes. Serological surveillance is one of several methods used to reveal infection history. We examined serum from 14 captive chimpanzees in Japanese primate research institutes for antibodies against 62 human pathogens and 1 chimpanzee-borne infectious disease. Antibodies tested positive against 29 pathogens at high or low prevalence in the chimpanzees. These results suggest that the proportions of human-borne infections may reflect the chimpanzee’s history, management system in the institute, or regional epidemics. Furthermore, captive chimpanzees are highly susceptible to human pathogens, and their induced antibodies reveal not only their history of infection, but also the possibility of protection against human pathogens.  相似文献   

19.
EcoHealth - Wild birds are important in the transmission of many zoonotic pathogens such as salmonella and avian influenza virus (AIV). The current study investigated the presence of bacterial and...  相似文献   

20.
Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be “preemergent” zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号