首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Dendritic cells (DCs) play a pivotal role in the immune system. There are many reports concerning DC-based immunotherapy. The differentiation and maturation of DCs is a critical part of DC-based immunotherapy. We investigated the differentiation and maturation of DCs in response to various stimuli.

Methods

Thirty-one patients with malignant bone and soft tissue tumors were enrolled in this study. All the patients had metastatic tumors and/or recurrent tumors. Peripheral blood mononuclear cells (PBMCs) were suspended in media containing interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF). These cells were then treated with or without 1) tumor lysate (TL), 2) TL + TNF-α, 3) OK-432. The generated DCs were mixed and injected in the inguinal or axillary region. Treatment courses were performed every week and repeated 6 times. A portion of the cells were analyzed by flow cytometry to determine the degree of differentiation and maturation of the DCs. Serum IFN-γ and serum IL-12 were measured in order to determine the immune response following the DC-based immunotherapy.

Results

Approximately 50% of PBMCs differentiated into DCs. Maturation of the lysate-pulsed DCs was slightly increased. Maturation of the TL/TNF-α-pulsed DCs was increased, commensurate with OK-432-pulsed DCs. Serum IFN-γ and serum IL-12 showed significant elevation at one and three months after DC-based immunotherapy.

Conclusions

Although TL-pulsed DCs exhibit tumor specific immunity, TL-pulsed cells showed low levels of maturation. Conversely, the TL/TNF-α-pulsed DCs showed remarkable maturation. The combination of IL-4/GM-CSF/TL/TNF-α resulted in the greatest differentiation and maturation for DC-based immunotherapy for patients with bone and soft tissue tumors.  相似文献   

2.
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) in human immune system. DC-based tumor vaccine has met with some success in specific malignancies, inclusive of breast cancer. In this study, we electrofused MDA-MB-231 breast cancer cell line with day-3 DCs derived from peripheral blood monocytes, and explored the biological characteristics of fusion vaccine and its anti-tumor effects in vitro. Day-3 mature DCs were generated from day-2 immature DCs by adding cocktails composed of TNF-α, IL-1β, IL-6 and PEG2. Day-3 mature DCs were identified and electofused with breast cancer cells to generate fusion vaccine. Phenotype of fusion cells were identified by fluorescence microscope and flow cytometer. The fusion vaccine was evaluated for T cell proliferation, secretion of IL-12 and IFN-γ, and induction of tumor-specific CTL response. Despite differences in morphology, day-3 and day-7 DC expressed similar surface markers. The secretion of IL-12 and IFN-γ in fusion vaccine group was much higher than that in the control group. Compared with control group, DC-tumor fusion vaccine could better stimulate the proliferation of allogeneic T lymphocytes and kill more breast cancer cells (MDA-MB-231) in vitro. Day-3 DCs had the same function as the day-7 DCs, but with a shorter culture period. Our findings suggested that day-3 DCs fused with whole apoptotic breast cancer cells could elicit effective specific antitumor T cell responses in vitro and may be developed into a prospective candidate for adoptivet immunotherapy.  相似文献   

3.
The contribution of natural killer (NK) cells to the treatment efficacy of dendritic cell (DC)-based cancer vaccines is being increasingly recognized. Much current efforts to optimize this form of immunotherapy are therefore geared towards harnessing the NK cell-stimulatory ability of DCs. In this study, we investigated whether generation of human monocyte-derived DCs with interleukin (IL)-15 followed by activation with a Toll-like receptor stimulus endows these DCs, commonly referred to as “IL-15 DCs”, with the capacity to stimulate NK cells. In a head-to-head comparison with “IL-4 DCs” used routinely for clinical studies, IL-15 DCs were found to induce a more activated, cytotoxic effector phenotype in NK cells, in particular in the CD56bright NK cell subset. With the exception of GM-CSF, no significant enhancement of cytokine/chemokine secretion was observed following co-culture of NK cells with IL-15 DCs. IL-15 DCs, but not IL-4 DCs, promoted NK cell tumoricidal activity towards both NK-sensitive and NK-resistant targets. This effect was found to require cell-to-cell contact and to be mediated by DC surface-bound IL-15. This study shows that DCs can express a membrane-bound form of IL-15 through which they enhance NK cell cytotoxic function. The observed lack of membrane-bound IL-15 on “gold-standard” IL-4 DCs and their consequent inability to effectively promote NK cell cytotoxicity may have important implications for the future design of DC-based cancer vaccine studies.  相似文献   

4.
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy. [BMB Reports 2014;47(9): 512-517]  相似文献   

5.
One central mechanism, by which vitamin D regulates human immune responses, is the direct modulation of dendritic cells (DCs). However, the effect of vitamin D on several key DC functions, such as the secretion of central inflammatory cytokines, remains controversial. Moreover, whether vitamin D treatment of DCs regulates their ability to promote differentiation of IL-17-/IL-22-producing T cell subsets, such as Th17 and Th22 cell, is not known. Here, we report that vitamin D treatment during differentiation of monocytes into DCs markedly enhanced their ability to secrete TNF-α, IL-6, IL-1β and IL-23. Cytokines secreted by vitamin D-treated DC were significantly more potent in driving differentiation of IL-22-producing T cells, but not IL-17-producing T cells, as compared to secreted cytokines of not-vitamin D-treated DCs. Finally, we found that the differentiation of IL-22-producing T cells mediated by supernatants of vitamin D-treated DCs was dependent on TNF-α IL-6 and IL-23. In summary, our study suggests a novel role of vitamin D in regulating DC-mediated immune responses in humans.  相似文献   

6.

Background

Limitations of the clinical efficacy of dendritic cell (DC)-based immunotherapy, as well as difficulties in their industrial production, are largely related to the limited number of autologous DCs from each patient. We here established a possible breakthrough, a simple and cytokine-based culture method to realize a log-scale order of functional murine DCs (>1,000-fold), which cells were used as a model before moving to human studies.

Methodology/Principal Findings

Floating cultivation of lineage-negative hematopoietic progenitors from bone marrow in an optimized cytokine cocktail (FLT3-L, IL-3, IL-6, and SCF) led to a stable log-scale proliferation of these cells, and a subsequent differentiation study using IL-4/GM-CSF revealed that 3-weeks of expansion was optimal to produce CD11b+/CD11c+ DC-like cells. The expanded DCs had typical features of conventional myeloid DCs in vitro and in vivo, including identical efficacy as tumor vaccines.

Conclusions/Significance

The concept of DC expansion should make a significant contribution to the progress of DC-based immunotherapy.  相似文献   

7.
We have previously reported 27 differentially expressed microRNAs (miRNAs) during human monocyte differentiation into immature dendritic cells (imDCs) and mature DCs (mDCs). However, their roles in DC differentiation and function remain largely elusive. Here, we report that microRNA (miR)-146a and miR-146b modulate DC apoptosis and cytokine production. Expression of miR-146a and miR-146b was significantly increased upon monocyte differentiation into imDCs and mDCs. Silencing of miR-146a and/or miR-146b in imDCs and mDCs significantly prevented DC apoptosis, whereas overexpressing miR-146a and/or miR-146b increased DC apoptosis. miR-146a and miR-146b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 expression. Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs enhanced DC apoptosis. By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival. Moreover, silencing of miR-146a and miR-146b expression had little effect on DC maturation but enhanced IL-12p70, IL-6, and TNF-α production as well as IFN-γ production by IL-12p70-mediated activation of natural killer cells, whereas miR-146a and miR-146b overexpression in mDCs reduced cytokine production. Silencing of miR-146a and miR-146b in DCs also down-regulated NF-κB inhibitor IκBα and increased Bcl-2 expression. Our results identify a new negative feedback mechanism involving the miR-146a/b-TRAF6/IRAK1-NF-κB axis in promoting DC apoptosis.  相似文献   

8.
A key factor in dendritic cell (DC)-based tumor immunotherapy is the identification of an immunoadjuvant capable of inducing DC maturation to enhance cellular immunity. The efficacy of a 50S ribosomal protein L7/L12 (rplL) from Mycobacterium tuberculosis Rv0652, as an immunoadjuvant for DC-based tumor immunotherapy, and its capacity for inducing DC maturation was investigated. In this study, we showed that Rv0652 is recognized by Toll-like receptor 4 (TLR4) to induce DC maturation, and pro-inflammatory cytokine production (TNF-alpha, IL-1beta, and IL-6) that is partially modulated by both MyD88 and TRIF signaling pathways. Rv0652-activated DCs could activate naïve T cells, effectively polarize CD4+ and CD8+ T cells to secrete IFN-gamma, and induce T cell-mediated-cytotoxicity. Immunization of mice with Rv0652-stimulated ovalbumin (OVA)-pulsed DCs resulted in induction of a potent OVA-specific CD8+ T cell response, slowed tumor growth, and promoted long-term survival in a murine OVA-expressing E.G7 thymoma model. These findings suggest that Rv0652 enhances the polarization of T effector cells toward a Th1 phenotype through DC maturation, and that Rv0652 may be an effective adjuvant for enhancing the therapeutic response to DC-based tumor immunotherapy.  相似文献   

9.
Trifunctional bispecific antibodies (trAbs) used in tumor immunotherapy have the unique ability to recruit T cells toward antigens on the tumor cell surface and, moreover, to activate accessory cells through their immunoglobulin Fc region interacting with activating Fcγ receptors. This scenario gives rise to additional costimulatory signals required for T cell–mediated tumor cell destruction and induction of an immunologic memory. Here we show in an in vitro system that most effective trAb-dependent T-cell activation and tumor cell elimination are achieved in the presence of dendritic cells (DCs). On the basis of these findings, we devise a novel approach of cancer immunotherapy that combines the specific advantages of trAbs with those of DC-based vaccination. Simultaneous delivery of trAbs and in vitro differentiated DCs resulted in a markedly improved tumor rejection in a murine melanoma model compared with monotherapy.  相似文献   

10.
Compared with the peripheral corneal limbus, the human central cornea lacks blood vessels, which is responsible for its immunologically privileged status and high transparency. Dendritic cells (DCs) are present in the central avascular area of inflamed corneas, but the mechanisms of their migration to this location are poorly understood. Here, we investigated the contribution of vessel formation to DC migration into the central cornea, and analyzed the DC chemotactic factors produced by human corneal epithelial (HCE) cells. Using human eyes obtained from surgical procedures, we then assessed vessel formation, DC distribution, and activin A expression immunohistochemically. The results demonstrated increased numbers of vessels and DCs in the central area of inflamed corneas, and a positive correlation between the number of vessels and DCs. Activin A was expressed in the subepithelial space and the endothelium of newly formed blood vessels in the inflamed cornea. In infected corneas, DCs were present in the central area but no vascularization was observed, suggesting the presence of chemotactic factors that induced DC migration from the limbal vessels. To test this hypothesis, we assessed the migration of monocyte-derived DCs toward HCE cell supernatants with or without lipopolysaccharide (LPS) stimulation of HCE cells and inflammatory cytokines (released by HCE cells). DCs migrated toward tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and activin A, as well as LPS-stimulated HCE cell supernatants. The supernatant contained elevated TNF-α, IL-6, and activin A levels, suggesting that they were produced by HCE cells after LPS stimulation. Therefore, vessels in the central cornea might constitute a DC migration route, and activin A expressed in the endothelium of newly formed vessels might contribute to corneal vascularization. Activin A also functions as a chemotactic factor, similar to HCE-produced TNF-α and IL-6. These findings enhance our understanding of the pathophysiology of corneal inflammation during infection.  相似文献   

11.
Human γδ T cells augment host defense against tumors and infections, and might have a therapeutic potential in immunotherapy. However, mechanism of γδ T cell proliferation is unclear, and therefore it is difficult to prepare sufficient numbers of γδ T cells for clinical immunotherapy. Recently, natural killer (NK)-like CD56brightCD11c+ cells were shown to promote the proliferation of γδ T cells in an IL-18-dependent manner. In this study, we demonstrated that the NK-like CD56brightCD11c+ cells could directly interact with γδ T cells to promote their sustained expansion, while conventional dendritic cells (DCs), IFN-α-induced DCs, plasmacytoid DCs or monocytes did not. We also examined the cellular mechanism underlying the regulation of CD56brightCD11c+ cells. CD14+ monocytes pre-incubated with IL-2/IL-18 formed intensive interactions with CD56intCD11c+ cells to promote their differentiation to CD56brightCD11c+ cells with helper function. The development of CD56brightCD11c+ cells was suppressed in an IFN-α dependent manner. These results indicate that CD14+ monocytes pretreated with IL-2/IL-18, but neither DCs nor monocytes, play a determining role on the development and proliferation of CD56brightCD11c+ cells, which in turn modulate the expansion of γδ T cells. CD56brightCD11c+ NK-like cells may be a novel target for immunotherapy utilizing γδ T cells, by overcoming the limitation of γδ T cells proliferation.  相似文献   

12.
Dendritic cells (DCs) play a key role in the initiation stage of an antigen-specific immune response. A variety of tumor-derived factors (TDFs) can suppress DC maturation and function, resulting in defects in the tumor-specific immune response. To identify unknown TDFs that may suppress DCs maturation and function, we established a high-throughput screening technology based on a human liver tumor T7 phage cDNA library and screened all of the proteins derived from hepatoma cells that potentially interact with immature DCs. Growth/differentiation factor-15 (GDF-15) was detected and chosen for further study. By incubation of DCs cultures with GDF-15, we demonstrate that GDF-15 can inhibit surface protrusion formation during DC maturation; suppress the membrane expression of CD83, CD86 and HLA-DR on DCs; enhance phagocytosis by DCs; reduce IL-12 and elevate TGF-β1 secretion by DCs; inhibit T cell stimulation and cytotoxic T lymphocyte (CTL) activation by DCs. By building tumor-bearing mouse models, we demonstrate that GDF-15 can inhibit the ability of DCs to stimulate a tumor-specific immune response in vivo. These results indicate that GDF-15 may be one of the critical molecules that inhibit DC maturation and function and are involved in tumor immune escape. Thus, GDF-15 may be a novel target in tumor immunotherapy.  相似文献   

13.

Background

Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage.

Methodology/Principal Findings

Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs) are cocultured together with autologous CD4+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1α, IL-2, IL-6, IL-10 and TNF-α) and chemokines (i.e. MIP-1α, MIP-1β and RANTES) in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-α.

Conclusions/Significance

Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment.  相似文献   

14.
Leishmania parasites and some molecules they secrete are known to modulate innate immune responses through effects on dendritic cells (DCs) and macrophages. Here, we characterized four Leishmania infantum potentially excreted/secreted recombinant proteins (LipESP) identified in our laboratory: Elongation Factor 1 alpha (LiEF-1α), a proteasome regulatory ATPase (LiAAA-ATPase) and two novel proteins with unknown functions, which we termed LiP15 and LiP23, by investigating their effect on in vitro differentiation and maturation of human DCs and on cytokine production by DCs and monocytes. During DCs differentiation, LipESP led to a significant decrease in CD1a. LiP23 and LiEF-1α, induced a decrease of HLA-DR and an increase of CD86 surface expression, respectively. During maturation, an up-regulation of HLA-DR and CD80 was found in response to LiP15, LiP23 and LiAAA-ATPase, while an increase of CD40 expression was only observed in response to LiP15. All LipESP induced an over-expression of CD86 with significant differences between proteins. These proteins also induced significant IL-12p70 levels in immature DCs but not in monocytes. The LipESP-induced IL-12p70 production was significantly enhanced by a co-treatment with IFN-γ in both cell populations. TNF-α and IL-10 were induced in DCs and monocytes with higher levels observed for LiP15 and LiAAA-ATPase. However, LPS-induced cytokine production during DC maturation or in monocyte cultures was significantly down regulated by LipESP co-treatment. Our findings suggest that LipESP strongly interfere with DCs differentiation suggesting a possible involvement in mechanisms established by the parasite for its survival. These proteins also induce DCs maturation by up-regulating several costimulatory molecules and by inducing the production of proinflammatory cytokines, which is a prerequisite for T cell activation. However, the reduced ability of LipESP-stimulated DCs and monocytes to respond to lipopolysaccharide (LPS) that can be observed during human leishmaniasis, suggests that under certain circumstances LipESP may play a role in disease progression.  相似文献   

15.
While the role of Transforming Growth Factor β (TGF-β) as an intrinsic pathway has been well established in driving de novo differentiation of Th17 cells, no study has directly assessed the capacity of TGF-β signaling initiated within dendritic cells (DCs) to regulate Th17 differentiation. The central finding of this study is the demonstration that Th17 cell fate during autoimmune inflammation is shaped by TGF-β extrinsic pathway via DCs. First, we provide evidence that TGF-β limits at the site of inflammation the differentiation of highly mature DCs as a means of restricting Th17 cell differentiation and controlling autoimmunity. Second, we demonstrate that TGF-β controls DC differentiation in the inflammatory site but not in the priming site. Third, we show that TGF-β controls DC numbers at a precursor level but not at a mature stage. While it is undisputable that TGF-β intrinsic pathway drives Th17 differentiation, our data provide the first evidence that TGF-β can restrict Th17 differentiation via DC suppression but such a control occurs in the site of inflammation, not at the site of priming. Such a demarcation of the role of TGF-β in DC lineage is unprecedented and holds serious implications vis-à-vis future DC-based therapeutic targets.  相似文献   

16.

Background

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF.

Methodology/Principal Findings

Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-α and IFN-γ. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation.

Conclusions/Significance

These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells'' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials.  相似文献   

17.
Dendritic cells (DCs) are the most potent antigen-presenting cells, and have thus been used in clinical cancer vaccines. However, the effects of DC vaccines are still limited, leading researchers to explore novel ways to make them effective. In this study, we investigated whether human monocyte-derived DCs generated via the addition of interleukin 15 (IL-15) had a higher capacity to induce antigen-specific T cells compared to conventional DCs. We isolated CD14+ monocytes from peripheral blood from multiple myeloma (MM) patients, and induced immature DCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 in the presence or absence of IL-15 for 4–6 days. Then we generated mature DCs (mDCs) with lipopolysaccharide for another 2 days [IL-15 mDCs (6 days), IL-15 mDCs (8 days), and conventional mDCs (8 days)]. IL-15 mDCs (6 days) showed higher expression of MHC I and II, CD40, CD86, and CCR7, and the secretion of IFN-γ was significantly higher compared to conventional mDCs. IL-15 mDCs (6 days) showed superior polarization of naïve T cells toward Th1 cells and a higher proportion of activated T cells, cytokine-induced killer (CIK) cells, and natural killer (NK) cells for inducing strong cytotoxicity against myeloma cells, and lower proportion of regulatory T cells compared to conventional mDCs. These data imply that novel multipotent mDCs generated by the addition of IL-15, which can be cultivated in 6 days, resulted in outstanding activation of T cells, CIK cells and NK cells, and may facilitate cellular immunotherapy for cancer patients.  相似文献   

18.
A20 is an ubiquitin-editing enzyme that ensures the transient nature of inflammatory signaling pathways induced by cytokines like TNF-α and IL-1 or pathogens via Toll-like receptor (TLR) pathways. It has been identified as a negative regulator of dendritic cell (DC) maturation and attenuator of their immunostimulatory properties. Ex vivo A20-depleted dendritic cells showed enhanced expression of pro-inflammatory cytokines and costimulatory molecules, which resulted in hyperactivation of tumor-infiltrating T lymphocytes and inhibition of regulatory T cells. In the present study, we demonstrate that a synthetic molecule consisting of a CpG oligonucleotide TLR9 agonist linked to A20-specific siRNAs silences its expression in TLR9+ mouse dendritic cells in vitro and in vivo. In the B16 mouse melanoma tumor model, silencing of A20 enhances the CpG-triggered induction of NFκB activity followed by elevated expression of IL-6, TNF-α and IL-12. This leads to potentiated antitumor immune responses manifested by increased numbers of tumor-specific cytotoxic T cells, high levels of tumor cell apoptosis and delayed tumor growth. Our findings confirm the central role of A20 in controlling the immunostimulatory potency of DCs and provide a strategy for simultaneous A20 silencing and TLR activation in vivo.  相似文献   

19.
Regulatory B cells (Bregs) produce antiinflammatory cytokines and inhibits proinflammatory response. Recently, immunosuppressive roles of Bregs in the effector functions of dendritic cells (DCs) were demonstrated. However, cross talk between Bregs and DCs in Helicobacter infection remains unknown. Here, we showed that direct stimulation of bone marrow-derived DCs (BM-DCs) with Helicobacter felis (H. felis) antigen upregulates their CD86 surface expression and causes the production of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and interleukin-10 (IL-10). Furthermore, prestimulation of DCs with supernatants derived from both Helicobacter-stimulated IL-10 B (Hfstim-IL-10 B) or IL-10+ B (Hfstim-IL-10+) cells suppresses the secretion of TNF-α and IL-6, but does not affect the expression of CD86 and secretion of IL-12 by lipopolysaccharide (LPS) or H. felis-activated BM-DCs. Remarkably, soluble factors secreted by Hfstim-IL-10 B cells, but not by Hfstim-IL-10+ B cells, suppress the secretion of IL-10 by BM-DCs upon subsequent LPS stimulation. In contrast, prestimulation with BM-DCs with supernatants of Hfstim-IL-10+ B cells before H. felis antigen stimulation induces significantly their IL-10 production. Collectively, our data indicated that prestimulation with soluble factors secreted by Hfstim-IL-10+ B cells, DCs exhibit a tolerogenic phenotype in response to LPS or Helicobacter antigen by secreting high levels of IL-10, but decreased levels of IL-6 and TNF-α.  相似文献   

20.
IL-15 is a pleotropic cytokine, which plays an important role in natural killer (NK) cell activity, T cell proliferation, and T cell cytotoxic activity. Dendritic cells (DCs) are the major antigen presenting cells in the immune system and presumed to play an important role in immune recognition of allo and xenotransplantation. We showed that IL-15 activated human peripheral blood DC is cytotoxic to human and porcine aortic endothelial cells. Unlike DCs, CD14+ monocytes show no cytotoxicity against the endothelial cells. This cytotoxic potential of IL-15 activated DC against endothelial cells is dose dependent and increases significantly upon treatment of endothelial cells with inflammatory cytokines like TNF-α or IFN-γ. The cytotoxic potential of IL-15 activated DC is associated with apoptosis of endothelial cells, as indicated by the increased Annexin V staining, caspase activation and loss of mitochondrial membrane potential. Further it was observed that DC mediated cytotoxicity against endothelial cell is mediated via granzyme B possibly secreted by the activated DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号